Explicit evaluation of certain exponential sums of binary quadratic functions

被引:20
作者
Hou, Xiang-Dong [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
binary quadratic function; exponential sum; Jacobi symbol;
D O I
10.1016/j.ffa.2006.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 0<alpha(1) <... < alpha(k) be integers and f(x) = Sigma(k)(i=1) a(i)x(2 alpha i+1) +bx is an element of F-2m[x], a(k) not equal 0. Define S(f,n)= Sigma(x is an element of F2n) e(f(x)) where m vertical bar n and e(x) =(-1)(TrF)2(n/F2(x)). We establish a relation among S(f,n) for all n with the same 2-adic order. When nu(2)(alpha(1)) =...= nu(2)(alpha(k)), where nu(2) is the 2-adic order function, we are able to compute S(f, n) explicitly for all n with a given f. Moreover, we are able to compute S(ax(2 alpha) + 1 + cx, n) explicitly for all alpha > 0, a is an element of F-2m, m vertical bar n and c is an element of F-2n. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:843 / 868
页数:26
相关论文
共 9 条
[1]   EXPLICIT EVALUATION OF CERTAIN EXPONENTIAL SUMS [J].
CARLITZ, L .
MATHEMATICA SCANDINAVICA, 1979, 44 (01) :5-16
[2]   EVALUATION OF SOME EXPONENTIAL-SUMS OVER A FINITE-FIELD [J].
CARLITZ, L .
MATHEMATISCHE NACHRICHTEN, 1980, 96 :319-339
[3]  
Dickson LE., 1958, LINEAR GROUPS EXPOSI
[4]   New cyclic difference sets with Singer parameters [J].
Dillon, JF ;
Dobbertin, H .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :342-389
[5]   CLASSIFICATION OF COSETS OF THE REED-MULLER CODE R(M-3,M) [J].
HOU, XD .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :203-224
[6]  
Ireland K., 1982, CLASSICAL INTRO MODE, DOI DOI 10.1007/978-1-4757-1779-2
[7]  
KOCH H, 2000, NUMBER THEORY AM MAT
[8]  
MACWILLIAMS FJ, 1977, THEORY ERROE CORRECT
[9]  
2004, MATHEMATICA