Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution

被引:65
作者
Han, Xiaotong [1 ]
Niu, Yingying [1 ]
Yu, Chang [1 ]
Liu, Zhibin [1 ]
Huang, Huawei [1 ]
Huang, Hongling [1 ]
Li, Shaofeng [1 ]
Guo, Wei [1 ]
Tan, Xinyi [1 ]
Qiu, Jieshan [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Liaoning Key Lab Energy Mat & Chem Engn, Dalian 116024, Liaoning, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Hetero-interface structure; Wet chemical etching; NiCo-LDH; FeOOH; Oxygen evolution reaction; LAYERED DOUBLE HYDROXIDE; HIGHLY EFFICIENT; WATER; NANOSHEETS; HETEROSTRUCTURES; EXFOLIATION; CATALYSTS; GRAPHENE; SURFACE; ARRAYS;
D O I
10.1016/j.nanoen.2019.104367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interface engineering has been recognized as a highly effective strategy for regulating the surface properties and improving the catalytic activities of materials, while the traditional interface construction methods are energy consumption and time-consuming. Herein, an ultrafast (30 s) interfacial reaction strategy is developed to construct the NiCo-LDH@FeOOH hetero-interface structure integrated on carbon fiber paper (NiCo-LDH@FeOOH/CFP) by a wet chemical etching method, which is involved in the Fe3+-triggered Hthorn ions formation and etching as well as the Fe3+ ions hydrolysis. The as-made NiCo-LDH@FeOOH/CFP features enriched interfacial active sites and finely modulated electron structure, thus realizing the remarkable electrocatalytic activity and durability for water oxidation with an ultralow overpotential of only 224 mV to deliver 10 mA cm(-2). Furthermore, this ultrafast interfacial reaction strategy can be expanded to construct other Ni-containing hydroxide@FeOOH hetero-interface structure, which will shed a new light on the further construction of bi/multi component hetero-structure materials in electrocatalysis and energy-related fields.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters [J].
Ao, Xiang ;
Zhang, Wei ;
Li, Zhishan ;
Li, Jian-Gang ;
Soule, Luke ;
Huang, Xing ;
Chiang, Wei-Hung ;
Chen, Hao Ming ;
Wang, Chundong ;
Liu, Meilin ;
Zeng, Xiao Cheng .
ACS NANO, 2019, 13 (10) :11853-11862
[2]   Amorphous Nanocages of Cu-Ni-Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution [J].
Cai, Zhi ;
Li, Lidong ;
Zhang, Youwei ;
Yang, Zhao ;
Yang, Jie ;
Guo, Yingjie ;
Guo, Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (13) :4189-4194
[3]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[4]   Eutectic-Derived Mesoporous Ni-Fe-O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting [J].
Dong, Chaoqun ;
Kou, Tianyi ;
Gao, Hui ;
Peng, Zhangquan ;
Zhang, Zhonghua .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[5]   FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction [J].
Feng, Jin-Xian ;
Xu, Han ;
Dong, Yu-Tao ;
Ye, Sheng-Hua ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) :3694-3698
[6]   Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J].
Grosvenor, AP ;
Kobe, BA ;
Biesinger, MC ;
McIntyre, NS .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (12) :1564-1574
[7]   Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution [J].
Han, Xiaotong ;
Yu, Chang ;
Huang, Huawei ;
Guo, Wei ;
Zhao, Changtai ;
Huang, Hongling ;
Li, Shaofeng ;
Liu, Zhibin ;
Tan, Xinyi ;
Gao, Zhanming ;
Yu, Jinhe ;
Qiu, Jieshan .
NANO ENERGY, 2019, 62 :136-143
[8]   Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution [J].
Han, Xiaotong ;
Yu, Chang ;
Yang, Juan ;
Song, Xuedan ;
Zhao, Changtai ;
Li, Shaofeng ;
Zhang, Yan ;
Huang, Huawei ;
Liu, Zhibin ;
Huang, Hongling ;
Tan, Xinyi ;
Qiu, Jieshan .
SMALL, 2019, 15 (18)
[9]   Ultrasensitive Iron-Triggered Nanosized Fe-CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution [J].
Han, Xiaotong ;
Yu, Chang ;
Zhou, Si ;
Zhao, Changtai ;
Huang, Huawei ;
Yang, Juan ;
Liu, Zhibin ;
Zhao, Jijun ;
Qiu, Jieshan .
ADVANCED ENERGY MATERIALS, 2017, 7 (14)
[10]   Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene [J].
Han, Xiaotong ;
Yu, Chang ;
Yang, Juan ;
Zhao, Changtai ;
Huang, Huawei ;
Liu, Zhibin ;
Ajayan, Pulickel M. ;
Qiu, Jieshan .
ADVANCED MATERIALS INTERFACES, 2016, 3 (07)