Intracranial vessel wall imaging framework-Data acquisition, processing, and visualization

被引:11
作者
Guggenberger, Konstanze [1 ]
Krafft, Axel J. [2 ]
Ludwig, Ute [2 ]
Raithel, Esther [3 ]
Forman, Christoph [3 ]
Meckel, Stephan [4 ]
Hennig, Juergen [2 ]
Bley, Thorsten A. [1 ]
Vogel, Patrick [1 ,5 ]
机构
[1] Univ Hosp Wurzburg, Dept Diagnost & Intervent Radiol, Wurzburg, Germany
[2] Univ Freiburg, Med Ctr Univ Freiburg, Fac Med, Dept Radiol,Med Phys, Freiburg, Germany
[3] Siemens Healthcare GmbH, Erlangen, Germany
[4] Univ Freiburg, Med Ctr Univ Freiburg, Fac Med, Dept Neuroradiol,Med Phys, Freiburg, Germany
[5] Univ Wurzburg, Dept Expt Phys Biophys 5, Wurzburg, Germany
关键词
Vessel wall imaging; MRI; GUI; CPR; Compressed sensing; Vasculitis; Atherosclerosis; Visualization; CURVED PLANAR REFORMATION; BLACK-BLOOD MRI; THINNING ALGORITHM; TREE; QUANTIFICATION; EXTRACTION;
D O I
10.1016/j.mri.2021.08.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: Assessment of vessel walls is an integral part in diagnosis and disease monitoring of vascular diseases such as vasculitis. Vessel wall imaging (VWI), in particular of intracranial arteries, is the domain of Magnetic Resonance Imaging (MRI) - but still remains a challenge. The tortuous anatomy of intracranial arteries and the need for high resolution within clinically acceptable scan times require special technical conditions regarding the hardware and software environments. Materials and methods: In this work a dedicated framework for intracranial VWI is presented offering an optimized, black-blood 3D T1-weighted post-contrast Compressed Sensing (CS)-accelerated MRI sequence prototype combined with dedicated 3D-GUI supported post-processing tool for the CPR visualization of tortuous arbitrary vessel structures. Results: Using CS accelerated MRI sequence, the scanning time for high-resolution 3D black-blood CS-space data could be reduced to under 10 min. These data are adequate for a further processing to extract straightened visualizations (curved planar reformats - CPR). First patient data sets could be acquired in clinical environment. Conclusion: A highly versatile framework for VWI visualization was demonstrated utilizing a post-processing tool to extract CPR reformats from high-resolution 3D black-blood CS-SPACE data, enabling simplified and optimized assessment of intracranial arteries in intracranial vascular disorders, especially in suspected intracranial vasculitis, by stretching their tortuous course. The processing time from about 15-20 min per patient (data acquisition and further processing) allows the integration into clinical routine.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 54 条
[1]   High-resolution intracranial vessel wall imaging: imaging beyond the lumen [J].
Alexander, Matthew D. ;
Yuan, Chun ;
Rutman, Aaron ;
Tirschwell, David L. ;
Palagallo, Gerald ;
Gandhi, Dheeraj ;
Sekhar, Laligam N. ;
Mossa-Basha, Mahmud .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2016, 87 (06) :589-597
[2]  
B ezier P., 1977, THESIS
[3]   Automatic centerline detection of small three-dimensional vessel structures [J].
Cheng, Yuanzhi ;
Hu, Xin ;
Wang, Yadong ;
Wang, Jinke ;
Tamura, Shinichi .
JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (01)
[4]   EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice [J].
Dejaco, Christian ;
Ramiro, Sofia ;
Duftner, Christina ;
Besson, Florent L. ;
Bley, Thorsten A. ;
Blockmans, Daniel ;
Brouwer, Elisabeth ;
Cimmino, Marco A. ;
Clark, Eric ;
Dasgupta, Bhaskar ;
Diamantopoulos, Andreas P. ;
Direskeneli, Haner ;
Iagnocco, Annamaria ;
Klink, Thorsten ;
Neill, Lorna ;
Ponte, Cristina ;
Salvarani, Carlo ;
Slart, Riemer H. J. A. ;
Whitlock, Madeline ;
Schmidt, Wolfgang A. .
ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 (05) :636-643
[5]  
Dijkstra E.W., 1959, Numer. Math, V1, P269, DOI [10.1007/BF01386390, DOI 10.1007/BF01386390]
[6]   Three-dimensional vessel segmentation using a novel combinatory filter framework [J].
Ding, Y. ;
Ward, W. O. C. ;
Waesterlid, T. ;
Gowland, P. A. ;
Peters, A. M. ;
Yang, J. ;
Bai, L. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (22) :7013-7029
[7]   Whole-Brain Intracranial Vessel Wall Imaging at 3 Tesla Using Cerebrospinal Fluid-Attenuated T1-Weighted 3D Turbo Spin Echo [J].
Fan, Zhaoyang ;
Yang, Qi ;
Deng, Zixin ;
Li, Yuxia ;
Bi, Xiaoming ;
Song, Shlee ;
Li, Debiao .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (03) :1142-1150
[8]   Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative ReconstructionFirst Experience [J].
Fritz, Jan ;
Raithel, Esther ;
Thawait, Gaurav K. ;
Gilson, Wesley ;
Papp, Derek F. .
INVESTIGATIVE RADIOLOGY, 2016, 51 (06) :400-409
[9]   Efficient dilation, erosion, opening, and closing algorithms [J].
Gil, J ;
Kimmel, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (12) :1606-1617
[10]   Large artery intracranial occlusive disease - A large worldwide burden but a relatively neglected frontier [J].
Gorelick, Philip B. ;
Wong, Ka Sing ;
Bae, Hee-Joon ;
Pandey, Dilip K. .
STROKE, 2008, 39 (08) :2396-2399