SOLVABILITY OF LINEAR BOUNDARY VALUE PROBLEMS FOR SUBDIFFUSION EQUATIONS WITH MEMORY

被引:15
|
作者
Krasnoschok, Mykola [1 ]
Pata, Vittorino [2 ]
Vasylyeva, Nataliya [1 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, G Batyuka Str 19, UA-84100 Sloviansk, Ukraine
[2] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
基金
欧盟地平线“2020”;
关键词
Materials with memory; subdiffusion equations; Caputo derivatives; coercive estimates; INTEGRODIFFERENTIAL EQUATIONS; PARABOLIC TYPE; ASYMPTOTIC-BEHAVIOR; VOLTERRA-EQUATIONS; GLOBAL EXISTENCE; DIFFUSION; REGULARITY; SPACE; MODELS; MEDIA;
D O I
10.1216/JIE-2018-30-3-417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For nu is an element of 0, 1), the nonautonomous integro-differential equation D(t)(nu)u - L(1)u - integral(t)(0) k(1)(t - s)L(2)u(., s)ds = f(x, t) is considered here, where D-nu(t) is the Caputo fractional derivative and L-1 and L-2 are uniformly elliptic operators with smooth coefficients dependent on time. The global classical solvability of the associated initial-boundary value problems is addressed.
引用
收藏
页码:417 / 445
页数:29
相关论文
共 50 条