Gradient estimates for parabolic problems with unbounded coefficients in non convex unbounded domains

被引:12
作者
Bertoldi, Marcello
Fornaro, Simona
Lorenzi, Luca
机构
[1] Delft Univ Technol, NL-2600 GA Delft, Netherlands
[2] Univ Lecce, Dipartimento Matemat Ennio De Giorgi, I-73100 Lecce, Italy
[3] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
D O I
10.1515/FORUM.2007.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of uniformly elliptic operators A with unbounded coefficients in unbounded domains Omega. Under suitable assumptions on the geometry of Omega and on the coefficients, we prove that the Cauchy-Neumann problem associated with the operator A admits a unique bounded classical solution u for any initial datum f which is bounded and continuous in (Omega) over bar. Moreover, we prove uniform and pointwise gradient estimates for u. Finally, we give some applications of the so obtained estimates.
引用
收藏
页码:603 / 632
页数:30
相关论文
共 18 条
[1]  
[Anonymous], 1996, GRADUATE STUDIES MAT
[2]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[3]  
Bensoussan A., 1984, IMPULSE CONTROL QUAS
[4]  
Bernstein S, 1906, MATH ANN, V62, P253, DOI 10.1007/BF01449980
[5]   Estimates of the derivatives for parabolic operators with unbounded coefficients [J].
Bertoldi, M ;
Lorenzi, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) :2627-2664
[6]   Gradient estimates in parabolic problems with unbounded coefficients [J].
Bertoldi, M ;
Fornaro, S .
STUDIA MATHEMATICA, 2004, 165 (03) :221-254
[7]  
BERTOLDI M, 2005, PURE APPL MATH
[8]  
Cerrai S., 2001, 2 ORDER PDES FINITE, V1762, DOI [10.1007/b80743, DOI 10.1007/B80743]
[9]  
Da Prato G., 2002, 2 ORDER PARTIAL DIFF
[10]  
ENGEL KJ, 2000, 1 PARAMETER SEMIGROU