On a local solvability and stability of the inverse transmission eigenvalue problem

被引:42
作者
Bondarenko, Natalia [1 ,2 ]
Buterin, Sergey [2 ]
机构
[1] Samara Natl Res Univ, Dept Appl Math, Samara, Russia
[2] Saratov Natl Res State Univ, Dept Math, Saratov, Russia
关键词
inverse spectral problem; transmission eigenvalue problem; local solution; stability;
D O I
10.1088/1361-6420/aa8cb5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
引用
收藏
页数:19
相关论文
共 28 条
[1]   The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Gintides, Drossos ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2011, 27 (11)
[2]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[3]  
Beals R.R., 1988, Direct and inverse scattering on the line, V28
[4]  
Bondarenko N, 2017, ANAL MATH PHYS
[6]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[7]   On an Inverse Transmission Problem From Complex Eigenvalues [J].
Buterin, S. A. ;
Yang, C. -F. .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :859-866
[8]   On an open question in the inverse transmission eigenvalue problem [J].
Buterin, S. A. ;
Yang, C-F ;
Yurko, V. A. .
INVERSE PROBLEMS, 2015, 31 (04)
[9]   Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions [J].
Buterin, Sergey A. ;
Shieh, Chung-Tsun ;
Yurko, Vjacheslav A. .
BOUNDARY VALUE PROBLEMS, 2013,
[10]  
Cakoni F., 2012, MSRI PUBLICATIONS, P527