Recent results in the literature have provided connections between the so-called turnpike property, near optimality of closed-loop solutions, and strict dissipativity. Motivated by applications in economics, optimal control problems with discounted stage cost are of great interest. In contrast to non-discounted optimal control problems, it is more likely that several asymptotically stable optimal equilibria coexist. Due to the discounting and transition cost from a local to the global equilibrium, it may be more favourable staying in a local equilibrium than moving to the global-cheaper-equilibrium. In the literature, strict dissipativity was shown to provide criteria for global asymptotic stability of optimal equilibria and turnpike behaviour. In this paper, we propose a local notion of discounted strict dissipativity and a local turnpike property, both depending on the discount factor. Using these concepts, we investigate the local behaviour of (near-)optimal trajectories and develop conditions on the discount factor to ensure convergence to a local asymptotically stable optimal equilibrium.