A non-abelian free pro-p group is not linear over a local field

被引:9
作者
Barnea, Y [1 ]
Larsen, M
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.1998.7682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a (non-abelian) free pro-p group cannot be obtained as a closed subgroup of GL(n)(F), where F is a non-archimedean local held and n is arbitrary. Using a theorem of E. I. Zel'manov we deduce some group theoretic properties of linear pro-p groups over a local field. Our main tool is a recent theorem by Pink characterizing compact subgroups of GL(n)(F). (C) 1999 Academic Press.
引用
收藏
页码:338 / 341
页数:4
相关论文
共 10 条
[1]  
Dixon J., 1991, LONDON MATH SOC LECT, V157
[2]   GROUP PRESENTATION, PARA-ADIC ANALYTIC GROUPS AND LATTICES IN SL2(C) [J].
LUBOTZKY, A .
ANNALS OF MATHEMATICS, 1983, 118 (01) :115-130
[3]   ON SOME LAMBDA-ANALYTIC PRO-P GROUPS [J].
LUBOTZKY, A ;
SHALEV, A .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 85 (1-3) :307-337
[4]  
Margulis G. A., 1991, Discrete subgroups of semisimple lie groups
[5]   Compact subgroups of linear algebraic groups [J].
Pink, R .
JOURNAL OF ALGEBRA, 1998, 206 (02) :438-504
[6]  
Serre J.-P., 1992, LIE ALGEBRAS LIE GRO
[7]  
Shatz S., 1972, ANN MATH STUDIES, V67
[8]   FINITE PRESENTATIONS OF PRO-P GROUPS AND DISCRETE-GROUPS [J].
WILSON, JS .
INVENTIONES MATHEMATICAE, 1991, 105 (01) :177-183
[9]  
ZELMANOV EI, 1995, LONDON MATH SOC LECT, V212, P567
[10]  
ZUBKOV A, 1987, SIBERIAN MATH J, V28, P747