A CONVERGENT STAGGERED SCHEME FOR THE VARIABLE DENSITY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:11
作者
Latche, J. C. [1 ]
Saleh, K. [2 ]
机构
[1] IRSN, Fontenay Aux Roses, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Variable density; Navier-Stokes equations; staggered schemes; analysis; convergence; PROJECTION METHODS; APPROXIMATE SOLUTIONS; FLUID; FLOW;
D O I
10.1090/mcom/3241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a scheme for the time-dependent variable density Navier-Stokes equations. The algorithm is implicit in time, and the space approximation is based on a low-order staggered non-conforming finite element, the so-called Rannacher-Turek element. The convection term in the momentum balance equation is discretized by a finite volume technique, in such a way that a solution obeys a discrete kinetic energy balance, and the mass balance is approximated by an upwind finite volume method. We first show that the scheme preserves the stability properties of the continuous problem (L-infinity-estimate for the density, L-infinity(L-2)-and L-2(H-1)-estimates for the velocity), which yields, by a topological degree technique, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem.
引用
收藏
页码:581 / 632
页数:52
相关论文
共 37 条
  • [1] An L2-stable approximation of the Navier-Stokes convection operator for low-order non-conforming finite elements
    Ansanay-Alex, G.
    Babik, F.
    Latche, J. C.
    Vola, D.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (05) : 555 - 580
  • [2] A Staggered Scheme with Non-conforming Refinement for the Navier-Stokes Equations
    Babik, Fabrice
    Latche, Jean-Claude
    Piar, Bruno
    Saleh, Khaled
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 87 - 95
  • [3] Stability of a Crank-Nicolson pressure correction scheme based on staggered discretizations
    Boyer, F.
    Dardalhon, F.
    Lapuerta, C.
    Latche, J. -C.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 74 (01) : 34 - 58
  • [4] Boyer Franck, 2013, Applied mathematical sciences
  • [5] Brenner SC, 2004, MATH COMPUT, V73, P1067
  • [6] CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
  • [7] Deimling K., 1985, Nonlinear functional analysis, DOI DOI 10.1007/978-3-662-00547-7
  • [8] High order conservative finite difference scheme for variable density low Mach number turbulent flows
    Desjardins, Olivier
    Blanquart, Guillaume
    Balarac, Guillaume
    Pitsch, Heinz
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (15) : 7125 - 7159
  • [9] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547
  • [10] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes
    Eymard, R
    Gallouet, T
    Ghilani, M
    Herbin, R
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (04) : 563 - 594