Non-archimedean analytic curves in the complements of hypersurface divisors

被引:7
作者
An, Ta Thi Hoai [2 ]
Wang, Julie Tzu-Yueh [1 ]
Wong, Pit-Mann [3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Inst Math, Hanoi, Vietnam
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1016/j.jnt.2007.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the degeneration dimension of non-archimedean analytic maps into the complement of hypersurface divisors of smooth projective varieties. We also show that there exist no non-archimedean analytic maps,into P-n \ boolean OR(n)(i=1) D-i where D-i, 1 <= i <= n, are hypersurfaces of degree at least 2 in general position and intersecting transversally. Moreover, we prove that there exist no non-archimedean analytic maps into P-2 \ boolean OR(2)(i=1) D-i when D-1, D-2 are generic plane curves with deg D-1 + deg D-2 >= 4. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 15 条
[1]   A defect relation for non-Archimedean analytic curves in arbitrary projective varieties [J].
An, Ta Thi Hoai .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1255-1261
[2]   PICARD-TYPE THEOREMS FOR HOLOMORPHIC MAPPINGS [J].
BABETS, VA .
SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (02) :195-200
[3]  
Berkovich V. G., 1990, MATH SURVEYS MONOGR, V33
[4]   NON-ARCHIMEDEAN ANALYTIC CURVES IN ABELIAN-VARIETIES [J].
CHERRY, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :393-404
[5]   Rigid analytic Picard theorems [J].
Cherry, W ;
Ru, M .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (04) :873-889
[6]  
Cherry William, 2002, VALUE DISTRIBUTION T, V303, P7
[7]  
DETHLOFF G, 1995, DUKE MATH J, V78, P193, DOI 10.1215/S0012-7094-95-07808-9
[8]   HYPERBOLICITY OF THE COMPLEMENTS OF PLANE ALGEBRAIC-CURVES [J].
DETHLOFF, G ;
SCHUMACHER, G ;
WONG, PM .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (03) :573-599
[9]  
Eremenko A., 1992, St. Petersburg Math. J., V3, P109
[10]  
Kobayashi S., 1970, PURE APPL MATH, V2