Elliptic eigenvalue problems with eigenparameter dependent boundary conditions

被引:22
作者
Binding, P [1 ]
Hryniv, R
Langer, H
Najman, B
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Inst Appl Problems Mech & Math, UA-290601 Lvov, Ukraine
[3] Vienna Tech Univ, Inst Anal, A-1040 Vienna, Austria
[4] Univ Zagreb, Dept Math, Zagreb 41000, Croatia
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jdeq.2000.3945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a uniformly elliptic second order linear operator on a smooth bounded domain Omega subset of R-n. We study the eigenvalue problem Au = lambdau subject to boundary conditions B(0)u = lambdaB(1)u on partial derivative Omega, where B-j are linear boundary operators. The problem is recast in the form Au=lambdau in a Hilbert or Krein space, and results are given on the location and type of the spectrum, full- and half-range completeness, and regularity of critical points. (C) 2001 Academic Press.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 20 条