TRACK FINDING WITH DEEP NEURAL NETWORKS

被引:2
作者
Kucharczyk, Marcin [1 ]
Wolter, Marcin [1 ]
机构
[1] Inst Nucl Phys PAN, Krakow, Poland
来源
COMPUTER SCIENCE-AGH | 2019年 / 20卷 / 04期
关键词
Deep Neural Networks; Machine Learning; tracking; HEP;
D O I
10.7494/csci.2019.20.4.3376
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
High-energy experiments require fast and efficient methods for reconstructing the tracks of charged particles. The commonly used algorithms are sequential, and the required CPU power increases rapidly with the number of tracks. Neural networks can speed up the process due to their capability of modeling complex non-linear data dependencies and finding all tracks in parallel. In this paper, we describe the application of a deep neural network for reconstructing straight tracks in a toy two-dimensional model. It is planned to apply this method to the experimental data obtained by the MUonE experiment at CERN.
引用
收藏
页码:477 / 493
页数:17
相关论文
共 19 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Abbiendi G, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4633-z
[3]  
[Anonymous], 2018, 4 INT WORKSH CONN DO
[4]  
Bishop C.M., 1994, Technical report
[5]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86
[6]  
Calafiura P., HEP ADV TRACKING ALG
[7]  
Chollet F., 2015, Keras: Deep learning library for theano and tensorflow
[8]   The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking [J].
Farrell, Steven ;
Anderson, Dustin ;
Calafiura, Paolo ;
Cerati, Giuseppe ;
Gray, Lindsey ;
Kowalkowski, Jim ;
Mudigonda, Mayur ;
Prabhat ;
Spentzouris, Panagiotis ;
Spiropoulou, Maria ;
Tsaris, Aristeidis ;
Vlimant, Jean-Roch ;
Zheng, Stephan .
CONNECTING THE DOTS/INTELLIGENT TRACKERS 2017 (CTD/WIT 2017), 2017, 150
[10]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]