GENERALIZED CHARACTERISTICS AND THE HUNTER-SAXTON EQUATION

被引:38
作者
Dafermos, Constantine M. [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Hunter-Saxton equation; generalized characteristics; HYPERBOLIC VARIATIONAL EQUATION; ASYMPTOTIC EQUATION; WAVE-EQUATION; EXISTENCE; UNIQUENESS;
D O I
10.1142/S0219891611002366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of generalized characteristics yields an elementary proof of uniqueness of dissipative solutions to the Cauchy problem for the Hunter-Saxton equation.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 13 条
[1]  
Beals D. H., 2001, Appl. Anal., V78, P255, DOI DOI 10.1080/00036810108840938
[2]   Global solutions of the Hunter-Saxton equation [J].
Bressan, A ;
Constantin, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :996-1026
[3]   Asymptotic variational wave equations [J].
Bressan, Alberto ;
Zhang, Ping ;
Zheng, Yuxi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (01) :163-185
[4]  
DAFERMOS CM, 1977, INDIANA U MATH J, V26, P1097, DOI 10.1512/iumj.1977.26.26088
[5]  
Dafermos CM, 2006, RIC MAT, V55, P79, DOI 10.1007/s11587-006-0006-x
[6]   Convergent difference schemes for the Hunter-Saxton equation [J].
Holden, H. ;
Karlsen, K. H. ;
Risebro, N. H. .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :699-744
[7]   ON A NONLINEAR HYPERBOLIC VARIATIONAL EQUATION .2. THE ZERO-VISCOSITY AND DISPERSION LIMITS [J].
HUNTER, JK ;
ZHENG, YX .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (04) :355-383
[8]   ON A NONLINEAR HYPERBOLIC VARIATIONAL EQUATION .1. GLOBAL EXISTENCE OF WEAK SOLUTIONS [J].
HUNTER, JK ;
ZHENG, YX .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (04) :305-353
[9]   DYNAMICS OF DIRECTOR FIELDS [J].
HUNTER, JK ;
SAXTON, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (06) :1498-1521
[10]   ON A COMPLETELY INTEGRABLE NONLINEAR HYPERBOLIC VARIATIONAL EQUATION [J].
HUNTER, JK ;
ZHENG, YX .
PHYSICA D, 1994, 79 (2-4) :361-386