Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

被引:43
作者
Guillemaut, C. [1 ,2 ,15 ]
Jardin, A. [3 ]
Horacek, J. [4 ,48 ]
Autricque, A. [3 ]
Arnoux, G. [5 ,14 ]
Boom, J. [6 ,60 ]
Brezinsek, S. [7 ,40 ]
Coenen, J. W. [7 ,40 ]
De La Luna, E. [8 ]
Devaux, S. [9 ,60 ]
Eich, T. [6 ]
Giroud, C. [5 ,14 ]
Harting, D. [5 ,14 ,40 ]
Kirschner, A. [7 ,40 ]
Lipschultz, B. [10 ,62 ,103 ]
Matthews, G. F. [5 ,14 ]
Moulton, D. [5 ,12 ]
O'Mullane, M. [11 ,58 ]
Stamp, M. [5 ]
Abhangi, M. [45 ]
Abreu, P. [51 ]
Aftanas, M. [48 ]
Afzal, M. [14 ]
Aggarwal, K. M. [31 ]
Aho-Mantila, L. [105 ]
Ahonen, E. [12 ]
Aints, M. [101 ]
Airila, M. [105 ]
Albanese, R. [99 ]
Alegre, D. [57 ]
Alessi, E. [44 ]
Aleynikov, P. [53 ]
Alfier, A. [18 ]
Alkseev, A. [66 ]
Allan, P. [14 ]
Almaviva, S. [90 ]
Alonso, A. [57 ]
Alper, B. [14 ]
Alsworth, I. [14 ]
Alves, D. [51 ]
Ambrosino, G. [99 ]
Ambrosino, R. [100 ]
Amosov, V. [83 ]
Andersson, F. [22 ]
Andersson Sunden, E. [26 ]
Angelone, M. [85 ]
Anghel, A. [80 ]
Anghel, M. [79 ]
Angioni, C. [60 ]
Appel, L. [14 ]
机构
[1] EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal
[3] CEA, IRFM, F-13108 St Paul Les Durance, France
[4] AS CR, Inst Plasma Phys, IPP CR, Prague 18221 8, Czech Republic
[5] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[6] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[7] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[8] CIEMAT, Lab Nacl Fus, E-28040 Madrid, Spain
[9] Univ Lorraine, CNRS UMR7198, Inst Jean Lamour, F-54506 Vandoeuvre Les Nancy, France
[10] Univ York, YPI, York YO10 5DQ, N Yorkshire, England
[11] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[12] Aalto Univ, FIN-00076 Aalto, Finland
[13] BCS, Barcelona, Spain
[14] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[15] IRFM, CEA, F-13108 St Paul Les Durance, France
[16] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[17] Consorzio CREATE, I-80125 Naples, Italy
[18] Consorzio RFX, I-35127 Padua, Italy
[19] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[20] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[21] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[22] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[23] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[24] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[25] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[26] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[27] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[28] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[29] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[30] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[31] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[32] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[33] Dublin City Univ, Dublin, Ireland
[34] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[35] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[36] EUROfus Programme Management Unit, D-85748 Garching, Germany
[37] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[38] European Commiss, B-1049 Brussels, Belgium
[39] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[40] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[41] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[42] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[43] Gen Atom, San Diego, CA 85608 USA
[44] IFP CNR, I-20125 Milan, Italy
[45] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[46] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[47] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[48] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[49] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[50] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
关键词
magnetic confinement fusion; edge localized modes; JET ITER-like wall;
D O I
10.1088/0741-3335/57/8/085006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with Delta W = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (T-e) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low T-e at the divertor target during ELMs is consistent with the 'Free-Streaming' kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER [J].
Brezinsek, S. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :11-21
[2]   ELM induced tungsten melting and its impact on tokamak operation [J].
Coenen, J. W. ;
Arnoux, G. ;
Bazylev, B. ;
Matthews, G. F. ;
Jachmich, S. ;
Balboa, I. ;
Clever, M. ;
Dejarnac, R. ;
Coffey, I. ;
Corre, Y. ;
Devaux, S. ;
Frassinetti, L. ;
Gauthier, E. ;
Horacek, J. ;
Knaup, M. ;
Komm, M. ;
Krieger, K. ;
Marsen, S. ;
Meigs, A. ;
Mertens, Ph. ;
Pitts, R. A. ;
Puetterich, T. ;
Rack, M. ;
Stamp, M. ;
Sergienko, G. ;
Tamain, P. ;
Thompson, V. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :78-84
[3]  
Eckstein W., 2002, CALCULATED SPUTTERIN
[4]   Type-I ELM power deposition profile width and temporal shape in JET [J].
Eich, T. ;
Thomsen, H. ;
Fundamenski, W. ;
Arnoux, G. ;
Brezinsek, S. ;
Devaux, S. ;
Herrmann, A. ;
Jachmich, S. ;
Rapp, J. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S856-S859
[5]   On the asymmetries of ELM divertor power deposition in JET and ASDEX Upgrade [J].
Eich, T. ;
Kallenbach, A. ;
Fundamenski, W. ;
Herrmann, A. ;
Naulin, V. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :760-763
[6]   A model of ELM filament energy evolution due to parallel losses [J].
Fundamenski, W ;
Pitts, RA .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (01) :109-156
[7]   Tokamak operation with high-Z plasma facing components [J].
Kallenbach, A ;
Neu, R ;
Dux, R ;
Fahrbach, HU ;
Fuchs, JC ;
Giannone, L ;
Gruber, O ;
Herrmann, A ;
Lang, PT ;
Lipschultz, B ;
Maggi, CF ;
Neuhauser, J ;
Philipps, V ;
Pütterich, T ;
Rohde, V ;
Roth, J ;
Sergienko, G ;
Sips, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B207-B222
[8]   Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation [J].
Loarte, A. ;
Huijsmans, G. ;
Futatani, S. ;
Baylor, L. R. ;
Evans, T. E. ;
Orlov, D. M. ;
Schmitz, O. ;
Becoulet, M. ;
Cahyna, P. ;
Gribov, Y. ;
Kavin, A. ;
Naik, A. Sashala ;
Campbell, D. J. ;
Casper, T. ;
Daly, E. ;
Frerichs, H. ;
Kischner, A. ;
Laengner, R. ;
Lisgo, S. ;
Pitts, R. A. ;
Saibene, G. ;
Wingen, A. .
NUCLEAR FUSION, 2014, 54 (03)
[9]   JET ITER-like wall-overview and experimental programme [J].
Matthews, G. F. ;
Beurskens, M. ;
Brezinsek, S. ;
Groth, M. ;
Joffrin, E. ;
Loving, A. ;
Kear, M. ;
Mayoral, M-L ;
Neu, R. ;
Prior, P. ;
Riccardo, V. ;
Rimini, F. ;
Rubel, M. ;
Sips, G. ;
Villedieu, E. ;
de Vries, P. ;
Watkins, M. L. .
PHYSICA SCRIPTA, 2011, T145
[10]   Quasineutral plasma expansion into infinite vacuum as a model for parallel ELM transport [J].
Moulton, D. ;
Ghendrih, Ph ;
Fundamenski, W. ;
Manfredi, G. ;
Tskhakaya, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (08)