The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress

被引:36
|
作者
Huang, Qin [1 ]
Wang, Meiping [4 ]
Xia, Zongliang [1 ,2 ,3 ]
机构
[1] Henan Agr Univ, Coll Life Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Collaborat Innovat Ctr Henan Grain Crops, Zhengzhou 450002, Henan, Peoples R China
[3] Key Lab Wheat & Maize Crop Sci, Zhengzhou 450002, Henan, Peoples R China
[4] Lib Henan Agr Univ, Zhengzhou 450002, Henan, Peoples R China
关键词
Maize; Sulfate transporter; Sulfur nutrition; Abiotic stress; SULFUR ASSIMILATION; TRANSPORTERS; ARABIDOPSIS; ORGANS; PLANTS; ROOTS; ABA;
D O I
10.1016/j.jplph.2017.10.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a foundation for better understanding the functional diversity of the SULTR family and exploring genes of interest for genetic improvement of sulfur use efficiency in cereal crop plants.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [1] Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)
    Li, Sinan
    Hou, Shuai
    Sun, Yuanqing
    Sun, Minghao
    Sun, Yan
    Li, Xin
    Li, Yunlong
    Wang, Luyao
    Cai, Quan
    Guo, Baitao
    Zhang, Jianguo
    GENES, 2025, 16 (01)
  • [2] MOLECULAR CLONING AND EXPRESSION ANALYSIS OF BETAINE TRANSPORTER GENE IN MAIZE (ZEA MAYS L.)
    Su, Yunyun
    Qin, Cheng
    Li, Zheng
    Cheng, Yaqian
    Ahmed, Nadeem
    Zhang, Chenxi
    Zhang, Lixin
    PAKISTAN JOURNAL OF BOTANY, 2019, 51 (06) : 2073 - 2079
  • [3] Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family
    Zhang, Zhongbao
    Zhang, Jiewei
    Chen, Yajuan
    Li, Ruifen
    Wang, Hongzhi
    Ding, Liping
    Wei, Jianhua
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (09) : 6157 - 6166
  • [4] Comprehensive identification and expression analysis of the CPP gene family in maize (Zea mays L.)
    Lei Gu
    Tianyu Kang
    Tuo Zeng
    Hongcheng Wang
    Bin Zhu
    Xuye Du
    Yinglang Liu
    BMC Plant Biology, 25 (1)
  • [5] Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress
    Song, X. Y.
    Zhang, Y. Y.
    Wu, F. C.
    Zhang, L.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (03):
  • [6] Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions
    Li, Yidan
    Shan, Xiaohui
    Jiang, Zhilei
    Zhao, Lei
    Jin, Fengxue
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 621 - 633
  • [7] Role of Exogenous Glutathione in Alleviating Abiotic Stress in Maize (Zea mays L.)
    Pei, Laming
    Che, Ronghui
    He, Linlin
    Gao, Xingxing
    Li, Weijun
    Li, Hui
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (01) : 199 - 215
  • [8] Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family
    Zhongbao Zhang
    Jiewei Zhang
    Yajuan Chen
    Ruifen Li
    Hongzhi Wang
    Liping Ding
    Jianhua Wei
    Molecular Biology Reports, 2014, 41 : 6157 - 6166
  • [9] Genome-wide identification and investigation of monosaccharide transporter gene family based on their evolution and expression analysis under abiotic stress and hormone treatments in maize (Zea mays L.)
    Zhu, Jialun
    Li, Tianfeng
    Ma, Jing
    Li, Wenyu
    Zhang, Hanyu
    Nadezhda, Tsyganova
    Zhu, Yanshu
    Dong, Xiaomei
    Li, Cong
    Fan, Jinjuan
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [10] Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses
    Xue, Baoping
    Liang, Zicong
    Liu, Yue
    Li, Dongyang
    Liu, Chang
    PLANTS-BASEL, 2024, 13 (20):