The semiclassical regime of the chaotic quantum-classical transition

被引:9
作者
Greenbaum, BD
Habib, S
Shizume, K
Sundaram, B
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Tsukuba, Inst Lib & Informat Sci, Tsukuba, Ibaraki 3058550, Japan
[4] CUNY Coll Staten Isl, Grad Fac Phys, Staten Isl, NY 10314 USA
[5] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1979227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An analysis of the semiclassical regime of the quantum-classical transition is given for open, bounded, one-dimensional chaotic dynamical systems. Environmental fluctuations-characteristic of all realistic dynamical systems-suppress the development of a fine structure in classical phase space and damp nonlocal contributions to the semiclassical Wigner function, which would otherwise invalidate the approximation. This dual regularization of the singular nature of the semiclassical limit is demonstrated by a numerical investigation of the chaotic Duffing oscillator. (C) 2005 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 32 条
[1]   METHOD OF QUASICLASSICAL APPROXIMATION FOR C-NUMBER PROJECTION IN COHERENT STATES BASIS [J].
BERMAN, GP ;
IOMIN, AM ;
ZASLAVSKY, GM .
PHYSICA D, 1981, 4 (01) :113-121
[2]   EVOLUTION OF SEMI-CLASSICAL QUANTUM STATES IN PHASE-SPACE [J].
BERRY, MV ;
BALAZS, NL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (05) :625-642
[3]   SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION [J].
BERRY, MV .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343) :237-271
[4]  
BERRY MV, 1991, HOUCHES LECT SERIES, V54
[5]   Continuous quantum measurement and the quantum to classical transition [J].
Bhattacharya, T ;
Habib, S ;
Jacobs, K .
PHYSICAL REVIEW A, 2003, 67 (04) :12
[6]   Continuous quantum measurement and the emergence of classical chaos [J].
Bhattacharya, T ;
Habib, S ;
Jacobs, K .
PHYSICAL REVIEW LETTERS, 2000, 85 (23) :4852-4855
[7]   INFLUENCE OF DAMPING ON QUANTUM INTERFERENCE - AN EXACTLY SOLUBLE MODEL [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICAL REVIEW A, 1985, 31 (02) :1059-1066
[8]  
Carmichael H., 1993, OPEN SYSTEMS APPROAC
[9]  
Carvalho ARR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026211
[10]   QUANTUM-MECHANICAL MODEL FOR CONTINUOUS POSITION MEASUREMENTS [J].
CAVES, CM ;
MILBURN, GJ .
PHYSICAL REVIEW A, 1987, 36 (12) :5543-5555