Effect of normal processes on thermal conductivity of germanium, silicon and diamond

被引:7
作者
Saikia, Banashree [1 ]
Kumar, Anil [2 ]
机构
[1] ICFAI Univ, Icfai Tech, Dept Phys, Agartala 799210, India
[2] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2008年 / 71卷 / 01期
关键词
phonon dispersion; phonon Boltzmann equation; lattice thermal conductivity; normal process; relaxation time; redistribution of phonon momentum;
D O I
10.1007/s12043-008-0147-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch - KK-S model and (b) between different phonon branches - KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond with natural isotopes and highly enriched isotopes. It is observed that the consideration of the normal scattering processes involving different phonon branches gives better results for the temperature dependence of the thermal conductivity of germanium, silicon and diamond with natural and highly enriched isotopes. Also, the estimation of the lattice thermal conductivity of germanium and silicon for these models with the consideration of quadratic form of frequency dependences of phonon wave vector leads to the conclusion that the splitting of longitudinal and transverse phonon modes, as suggested by Holland, is not an essential requirement to explain the entire temperature dependence of lattice thermal conductivity whereas KK-H model gives a better estimation of the thermal conductivity without the splitting of the acoustic phonon modes due to the dispersive nature of the phonon dispersion curves.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 13 条
[1]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[2]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[3]  
Dresselhaus MS, 2001, SEMICONDUCT SEMIMET, V71, P1
[4]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[5]   ROLE OF LOW-ENERGY PHONONS IN THERMAL CONDUCTION [J].
HERRING, C .
PHYSICAL REVIEW, 1954, 95 (04) :954-965
[6]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[7]   The effect of normal phonon-phonon scattering processes on the maximum thermal conductivity of isotopically pure silicon crystals [J].
Kuleev, IG ;
Kuleev, II .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 95 (03) :480-490
[8]   Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors [J].
Morelli, DT ;
Heremans, JP ;
Slack, GA .
PHYSICAL REVIEW B, 2002, 66 (19) :1953041-1953049
[9]   THERMAL-CONDUCTIVITY OF DIAMOND BETWEEN 170 AND 1200-K AND THE ISOTOPE EFFECT [J].
OLSON, JR ;
POHL, RO ;
VANDERSANDE, JW ;
ZOLTAN, A ;
ANTHONY, TR ;
BANHOLZER, WF .
PHYSICAL REVIEW B, 1993, 47 (22) :14850-14856
[10]   Thermal conductivity of isotopically enriched silicon [J].
Ruf, T ;
Henn, RW ;
Asen-Palmer, M ;
Gmelin, E ;
Cardona, M ;
Pohl, HJ ;
Devyatych, GG ;
Sennikov, PG .
SOLID STATE COMMUNICATIONS, 2000, 115 (05) :243-247