Rethinking ImageNet Pre-training

被引:709
作者
He, Kaiming [1 ]
Girshick, Ross [1 ]
Dollar, Piotr [1 ]
机构
[1] Facebook AI Res FAIR, Menlo Pk, CA 94025 USA
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
D O I
10.1109/ICCV.2019.00502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We report competitive results on object detection and instance segmentation on the COCO dataset using standard models trained from random initialization. The results are no worse than their ImageNet pre-training counterparts even when using the hyper-parameters of the baseline system (Mask R-CNN) that were optimized for fine-tuning pre-trained models, with the sole exception of increasing the number of training iterations so the randomly initialized models may converge. Training from random initialization is surprisingly robust; our results hold even when: (i) using only 10% of the training data, (ii) for deeper and wider models, and (iii) for multiple tasks and metrics. Experiments show that ImageNet pre-training speeds up convergence early in training, but does not necessarily provide regularization or improve final target task accuracy. To push the envelope we demonstrate 50.9 AP on COCO object detection without using any external data-a result on par with the top COCO 2017 competition results that used ImageNet pre-training. These observations challenge the conventional wisdom of ImageNet pre-training for dependent tasks and we expect these discoveries will encourage people to rethink the current de facto paradigm of 'pre-training and fine-tuning' in computer vision.
引用
收藏
页码:4917 / 4926
页数:10
相关论文
共 46 条
[1]  
Agrawal P, 2014, LECT NOTES COMPUT SC, V8695, P329, DOI 10.1007/978-3-319-10584-0_22
[2]  
[Anonymous], 2014, ECCV
[3]  
Ba J. L., 2016, Layer Normalization, DOI 10.48550/arXiv.1607.06450
[4]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[5]   Unsupervised Visual Representation Learning by Context Prediction [J].
Doersch, Carl ;
Gupta, Abhinav ;
Efros, Alexei A. .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1422-1430
[6]  
Donahue J, 2014, PR MACH LEARN RES, V32
[7]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[8]  
Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[9]  
Girshick Ross, 2015, ICCV
[10]  
Girshick Ross, 2018, Detectron