Complete convergence of moving average processes under dependence assumptions

被引:70
作者
Zhang, LX [1 ]
机构
[1] HANGZHOU UNIV,DEPT MATH,HANGZHOU 310028,PEOPLES R CHINA
关键词
complete convergence; moving average; phi-mixing;
D O I
10.1016/0167-7152(95)00215-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Y-i; -infinity < i < infinity} be a doubly infinite sequence of identically distributed and phi-mixing random variables, {a(i); -infinity < i < infinity} an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence of {Sigma(k=1)(n) Sigma(i = -infinity) a(i+k)Yi/n(1/t); n greater than or equal to 1} under some suitable conditions.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 6 条
[1]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[2]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[3]  
Ibragimov IA., 1962, THEOR PROBAB APPL, V7, P349, DOI DOI 10.1137/1107036
[4]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[5]  
Shao Q.M., 1988, Acta Math. Sinica Chin. Ser, V31, P736
[6]   ALMOST SURE INVARIANCE-PRINCIPLES FOR MIXING SEQUENCES OF RANDOM-VARIABLES [J].
SHAO, QM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 48 (02) :319-334