Fitting triangular norms to empirical data

被引:6
作者
Beliakov, G [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Melbourne, Vic, Australia
来源
LOGICAL, ALGEBRAIC, ANALYTIC, AND PROBABILISTIC ASPECTS OF TRIANGULAR NORMS | 2005年
关键词
D O I
10.1016/B978-044451814-9/50009-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This chapter discusses some specific tools that can be used to build triangular norms based on a finite number of (possibly noisy) observations. Such problem arises in applications, when observed data (e.g., decision patterns of experts) need to be modelled with a special class of functions, such as triangular norms. We show how this problem can be transformed into a constrained regression problem, and then efficiently solved. We also discuss related operators: uninorms, nullnorms and associative copulas.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 17 条
[11]   On Archimedean triangular norms [J].
Jenei, S .
FUZZY SETS AND SYSTEMS, 1998, 99 (02) :179-186
[12]  
Klement E. P., 2000, Triangular Norms
[13]  
KLEMENT EP, TRIANGULAR NORMS BAS, P17
[14]  
Lawson C.L., 1995, SIAM
[15]  
Nelsen RB, 1998, INTRO COPULAS
[16]  
Schweizer B., 1961, Publ. Math., V8, P169, DOI DOI 10.5486/PMD.1961.8.1-2.16
[17]   LATENT CONNECTIVES IN HUMAN DECISION-MAKING [J].
ZIMMERMANN, HJ ;
ZYSNO, P .
FUZZY SETS AND SYSTEMS, 1980, 4 (01) :37-51