Engineered Bacterial Outer Membrane Vesicles as Controllable Two-Way Adaptors to Activate Macrophage Phagocytosis for Improved Tumor Immunotherapy

被引:139
作者
Feng, Qingqing [1 ,2 ]
Ma, Xiaotu [1 ,2 ]
Cheng, Keman [1 ,2 ]
Liu, Guangna [1 ,2 ]
Li, Yao [1 ,2 ]
Yue, Yale [1 ,2 ]
Liang, Jie [1 ,2 ]
Zhang, Lizhuo [1 ,2 ]
Zhang, Tianjiao [1 ,2 ]
Wang, Xinwei [1 ,2 ]
Gao, Xiaoyu [1 ,2 ]
Nie, Guangjun [1 ,2 ,3 ]
Zhao, Xiao [1 ,2 ,3 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol China, CAS Key Lab Biomed Effects Nanomat & Nanosafety, 11 Beiyitiao, Beijing 100190, Peoples R China
[2] Natl Ctr Nanosci & Technol China, CAS Ctr Excellence Nanosci, 11 Beiyitiao, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Genet & Dev Biol, IGDB NCNST Joint Res Ctr, Beijing 100101, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
CD47; M1; polarization; outer membrane vesicles; tumor-associated macrophages; two-way adaptor; CD47; BLOCKADE; PHASE-I; POLARIZATION; RITUXIMAB; TARGET;
D O I
10.1002/adma.202206200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The most immune cells infiltrating tumor microenvironment (TME), tumor-associated macrophages (TAMs) closely resemble immunosuppressive M2-polarized macrophages. Moreover, tumor cells exhibit high expression of CD47 "don't eat me" signal, which obstructs macrophage phagocytosis. The precise and efficient activation of TAMs is a promising approach to tumor immunotherapy; however, re-education of macrophages remains a challenge. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic nanovesicles that can robustly stimulate macrophages. Here, an OMV-based controllable two-way adaptor is reported, in which a CD47 nanobody (CD47nb) is fused onto OMV surface (OMV-CD47nb), with the outer surface coated with a polyethylene glycol (PEG) layer containing diselenide bonds (PEG/Se) to form PEG/Se@OMV-CD47nb. The PEG/Se layer modification not only mitigates the immunogenicity of OMV-CD47nb, thereby remarkedly increasing the dose that can be administered safely through intravenous injection, but also equips the formulation with radiation-triggered controlled release of OMV-CD47nb. Application of radiation to tumors in mice injected with the nanoformulation results in remodeling of TME. As two-way adaptors, OMV-CD47nb activates TAM phagocytosis of tumor cells via multiple pathways, including induction of M1 polarization and blockade of "don't eat me" signal. Moreover, this activation of TAMs results in the stimulation of T cell-mediated antitumor immunity through effective antigen presentation.
引用
收藏
页数:16
相关论文
共 64 条
[1]   CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J].
Advani, Ranjana ;
Flinn, Ian ;
Popplewell, Leslie ;
Forero, Andres ;
Bartlett, Nancy L. ;
Ghosh, Nilanjan ;
Kline, Justin ;
Roschewski, Mark ;
LaCasce, Ann ;
Collins, Graham P. ;
Thu Tran ;
Lynn, Judith ;
Chen, James Y. ;
Volkmer, Jens-Peter ;
Agoram, Balaji ;
Huang, Jie ;
Majeti, Ravindra ;
Weissman, Irving L. ;
Takimoto, Chris H. ;
Chao, Mark P. ;
Smith, Sonali M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (18) :1711-1721
[2]   Macrophage-Based Approaches for Cancer Immunotherapy [J].
Anderson, Nicholas R. ;
Minutolo, Nicholas G. ;
Gill, Saar ;
Klichinsky, Michael .
CANCER RESEARCH, 2021, 81 (05) :1201-1208
[3]   CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy [J].
Barkal, Amira A. ;
Brewer, Rachel E. ;
Markovic, Maxim ;
Kowarsky, Mark ;
Barkal, Sammy A. ;
Zaro, Balyn W. ;
Krishnan, Venkatesh ;
Hatakeyama, Jason ;
Dorigo, Oliver ;
Barkal, Layla J. ;
Weissman, Irving L. .
NATURE, 2019, 572 (7769) :392-+
[4]   Exotoxins and endotoxins: Inducers of inflammatory cytokines [J].
Cavaillon, Jean-Marc .
TOXICON, 2018, 149 :45-53
[5]  
CHAN AH., 2020, J Exp Med, P217
[6]   Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma [J].
Chao, Mark P. ;
Alizadeh, Ash A. ;
Tang, Chad ;
Myklebust, June H. ;
Varghese, Bindu ;
Gill, Saar ;
Jan, Max ;
Cha, Adriel C. ;
Chan, Charles K. ;
Tan, Brent T. ;
Park, Christopher Y. ;
Zhao, Feifei ;
Kohrt, Holbrook E. ;
Malumbres, Raquel ;
Briones, Javier ;
Gascoyne, Randy D. ;
Lossos, Izidore S. ;
Levy, Ronald ;
Weissman, Irving L. ;
Majeti, Ravindra .
CELL, 2010, 142 (05) :699-713
[7]   Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology [J].
Cheng, Keman ;
Zhao, Ruifang ;
Li, Yao ;
Qi, Yingqiu ;
Wang, Yazhou ;
Zhang, Yinlong ;
Qin, Hao ;
Qin, Yuting ;
Chen, Long ;
Li, Chen ;
Liang, Jie ;
Li, Yujing ;
Xu, Jiaqi ;
Han, Xuexiang ;
Anderson, Gregory J. ;
Shi, Jian ;
Ren, Lei ;
Zhao, Xiao ;
Nie, Guangjun .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]  
de Bono JS, 2000, CLIN CANCER RES, V6, P397
[9]  
ENGELHARDT R, 1991, CANCER RES, V51, P2524
[10]   Phagocytosis checkpoints as new targets for cancer immunotherapy [J].
Feng, Mingye ;
Jiang, Wen ;
Kim, Betty Y. S. ;
Zhang, Cheng Cheng ;
Fu, Yang-Xin ;
Weissman, Irving L. .
NATURE REVIEWS CANCER, 2019, 19 (10) :568-586