AxonDeep: Automated Optic Nerve Axon Segmentation in Mice With Deep Learning

被引:9
作者
Deng, Wenxiang [1 ,2 ]
Hedberg-Buenz, Adam [2 ,3 ]
Soukup, Dana A. [2 ,3 ]
Taghizadeh, Sima [1 ]
Wang, Kai [4 ]
Anderson, Michael G. [2 ,3 ,5 ]
Garvin, Mona K. [1 ,2 ]
机构
[1] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[2] Iowa City VA Hlth Care Syst, Iowa City VA Ctr Prevent & Treatment Visual Loss, Iowa City, IA USA
[3] Univ Iowa, Dept Mol Physiol & Biophys, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
关键词
retinal ganglion cell; axon segmentation; deep learning; semisupervised learning; mice; RETINAL GANGLION-CELLS; COLLABORATIVE CROSS; IRIS ATROPHY; RAT MODEL; GLAUCOMA; NEURODEGENERATION; DAMAGE; PREVENTION; RESOURCE; MARKER;
D O I
10.1167/tvst.10.14.22
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Optic nerve damage is the principal feature of glaucoma and contributes to vision loss in many diseases. In animal models, nerve health has traditionally been assessed by human experts that grade damage qualitatively or manually quantify axons from sampling limited areas from histologic cross sections of nerve. Both approaches are prone to variability and are time consuming. First-generation automated approaches have begun to emerge, but all have significant shortcomings. Here, we seek improvements through use of deep-learning approaches for segmenting and quantifying axons from cross-sections of mouse optic nerve. Methods: Two deep-learning approaches were developed and evaluated: (1) a traditional supervised approach using a fully convolutional network trained with only labeled data and (2) a semisupervised approach trained with both labeled and unlabeled data using a generative-adversarial-network framework. Results: From comparisons with an independent test set of images with manually marked axon centers and boundaries, both deep-learning approaches outperformed an existing baseline automated approach and similarly to two independent experts. Performance of the semisupervised approach was superior and implemented into AxonDeep. Conclusions: AxonDeep performs automated quantification and segmentation of axons from healthy-appearing nerves and those with mild to moderate degrees of damage, similar to that of experts without the variability and constraints associated with manual performance. Translational Relevance: Use of deep learning for axon quantification provides rapid, objective, and higher throughput analysis of optic nerve that would otherwise not be possible.
引用
收藏
页数:17
相关论文
共 78 条
[11]   Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice [J].
Chang, B ;
Smith, RS ;
Hawes, NL ;
Anderson, MG ;
Zabaleta, A ;
Savinova, O ;
Roderick, TH ;
Heckenlively, JR ;
Davisson, MT ;
John, SWM .
NATURE GENETICS, 1999, 21 (04) :405-409
[12]   Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy [J].
Chauhan, BC ;
LeVatte, TL ;
Garnier, KL ;
Tremblay, FO ;
Pang, IH ;
Clark, AF ;
Archibald, ML .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (02) :634-640
[13]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[14]   The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics [J].
Chesler, Elissa J. ;
Miller, Darla R. ;
Branstetter, Lisa R. ;
Galloway, Leslie D. ;
Jackson, Barbara L. ;
Philip, Vivek M. ;
Voy, Brynn H. ;
Culiat, Cymbeline T. ;
Threadgill, David W. ;
Williams, Robert W. ;
Churchill, Gary A. ;
Johnson, Dabney K. ;
Manly, Kenneth F. .
MAMMALIAN GENOME, 2008, 19 (06) :382-389
[15]   The Collaborative Cross, a community resource for the genetic analysis of complex traits [J].
Churchill, G ;
Airey, DC ;
Allayee, H ;
Angel, JM ;
Attie, AD ;
Beatty, J ;
Beavis, WD ;
Belknap, JK ;
Bennett, B ;
Berrettini, W ;
Bleich, A ;
Bogue, M ;
Broman, KW ;
Buck, KJ ;
Buckler, E ;
Burmeister, M ;
Chesler, EJ ;
Cheverud, JM ;
Clapcote, S ;
Cook, MN ;
Cox, RD ;
Crabbe, JC ;
Crusio, WE ;
Darvasi, A ;
Deschnepper, CF ;
Doerge, RW ;
Farber, CR ;
Forejt, J ;
Gaile, D ;
Garlow, SJ ;
Geiger, H ;
Gershenfeld, H ;
Gordon, T ;
Gu, J ;
Gu, WK ;
de Haan, G ;
Hayes, NL ;
Heller, C ;
Himmelbauer, H ;
Hitzemann, R ;
Hunter, K ;
Hsu, HC ;
Iraqi, FA ;
Ivandic, B ;
Jacob, HJ ;
Jansen, RC ;
Jjepsen, KJ ;
Johnson, DK ;
Johnson, TE ;
Kempermann, G .
NATURE GENETICS, 2004, 36 (11) :1133-1137
[16]  
Dehabadi MH, 2014, NEURODEGENER DIS MAN, V4, P241, DOI [10.2217/nmt.14.19, 10.2217/NMT.14.19]
[17]   Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma [J].
Della Santina, Luca ;
Ou, Yvonne .
EXPERIMENTAL EYE RESEARCH, 2017, 158 :43-50
[18]  
Di Scandalea Melanie Lubrano, 2019, ARXIV190705143
[19]   An open-source computational tool to automatically quantify immunolabeled retinal ganglion cells [J].
Dordea, Ana C. ;
Bray, Mark-Anthony ;
Allen, Kaitlin ;
Logan, David J. ;
Fei, Fei ;
Malhotra, Rajeev ;
Gregory, Meredith S. ;
Carpenter, Anne E. ;
Buys, Emmanuel S. .
EXPERIMENTAL EYE RESEARCH, 2016, 147 :50-56
[20]   Early Detection of Subclinical Visual Damage After Blast-Mediated TBI Enables Prevention of Chronic Visual Deficit by Treatment With P7C3-S243 [J].
Dutca, Laura M. ;
Stasheff, Steven F. ;
Hedberg-Buenz, Adam ;
Rudd, Danielle S. ;
Batra, Nikhil ;
Blodi, Frederick R. ;
Yorek, Matthew S. ;
Yin, Terry ;
Shankar, Malini ;
Herlein, Judith A. ;
Naidoo, Jacinth ;
Morlock, Lorraine ;
Williams, Noelle ;
Kardon, Randy H. ;
Anderson, Michael G. ;
Pieper, Andrew A. ;
Harper, Matthew M. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (12) :8330-8341