High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures

被引:77
作者
Cooper, Christopher B. [1 ]
Nikzad, Shayla [1 ]
Yan, Hongping [1 ,2 ]
Ochiai, Yuto [1 ]
Lai, Jian-Cheng [1 ,3 ]
Yu, Zhiao [1 ,4 ]
Chen, Gan [1 ,5 ]
Kang, Jiheong [1 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchroton Radiat Lightsource, Menlo Pk, CA 94025 USA
[3] Nanjing Univ, State Key Lab Coordinat Chem, Sch Chem & Chem Engn, Nanjing 210093, Peoples R China
[4] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
THERMOPLASTIC ELASTOMERS; BEHAVIOR; UREA; PLASTICITY; NETWORKS;
D O I
10.1021/acscentsci.1c00829
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to similar to 1 MJ/m(3)). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m(3) or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.
引用
收藏
页码:1657 / 1667
页数:11
相关论文
共 61 条
[1]  
[Anonymous], 2003, POLYM PHYS
[2]   Energy Storage Capacity of Shape-Memory Polymers [J].
Anthamatten, Mitchell ;
Roddecha, Supacharee ;
Li, Jiahui .
MACROMOLECULES, 2013, 46 (10) :4230-4234
[3]   Aggregation of Ureido-Pyrimidinone Supramolecular Thermoplastic Elastomers into Nanofibers: A Kinetic Analysis [J].
Appel, Wilco P. J. ;
Portale, Giuseppe ;
Wisse, Eva ;
Dankers, Patricia Y. W. ;
Meijer, E. W. .
MACROMOLECULES, 2011, 44 (17) :6776-6784
[4]   4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges [J].
Biswas, Manik Chandra ;
Chakraborty, Samit ;
Bhattacharjee, Abhishek ;
Mohammed, Zaheeruddin .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (19)
[5]   Optically healable supramolecular polymers [J].
Burnworth, Mark ;
Tang, Liming ;
Kumpfer, Justin R. ;
Duncan, Andrew J. ;
Beyer, Frederick L. ;
Fiore, Gina L. ;
Rowan, Stuart J. ;
Weder, Christoph .
NATURE, 2011, 472 (7343) :334-U230
[6]   Two-way reversible shape memory in a semicrystalline network [J].
Chung, Taekwoong ;
Rorno-Uribe, Angel ;
Mather, Patrick T. .
MACROMOLECULES, 2008, 41 (01) :184-192
[7]   Attempt toward 1D cross-linked thermoplastic elastomers:: Structure and mechanical properties of a new system [J].
Colombani, O ;
Barioz, C ;
Bouteiller, L ;
Chanéac, C ;
Fompérie, L ;
Lortie, F ;
Montès, H .
MACROMOLECULES, 2005, 38 (05) :1752-1759
[8]   Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers [J].
Cooper, Christopher B. ;
Kang, Jiheong ;
Yin, Yikai ;
Yu, Zhiao ;
Wu, Hung-Chin ;
Nikzad, Shayla ;
Ochiai, Yuto ;
Yan, Hongping ;
Cai, Wei ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (39) :16814-16824
[9]   Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics [J].
Fang, Zizheng ;
Zheng, Ning ;
Zhao, Qian ;
Xie, Tao .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) :22077-22082
[10]  
Fetters L. J, 2007, PHYS PROPERTIES POLY, P447, DOI DOI 10.1007/978-0-387-69002-5_25