Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis

被引:212
作者
Bullock, Eric L. [1 ]
Woodcock, Curtis E. [1 ]
Olofsson, Pontus [1 ]
机构
[1] Boston Univ, Dept Earth & Environm, 685 Commonwealth Ave, Boston, MA 02215 USA
关键词
Degradation; Deforestation; Change detection; Time series analysis; Landsat; REDD; Area estimation; CERRADO VEGETATION; ESTIMATING AREA; DEFORESTATION; ACCURACY; CLASSIFICATION; PERFORMANCE; RONDONIA; AMAZON; MAP;
D O I
10.1016/j.rse.2018.11.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tropical forest loss currently contributes 5 to 15% of anthropogenic carbon emissions to the atmosphere. The large uncertainty in emissions estimates is a consequence of many factors, including differences in definitions of forests and degradation, as well as estimation methodologies. However, a primary factor driving uncertainty is an inability to properly account for forest degradation. While remote sensing offers the only practical way of monitoring forest disturbances over large areas, and despite recent improvements in data quality and quantity and processing techniques, remote sensing approaches are still limited in their ability to detect forest degradation. In this paper, a system is presented that uses time series of Landsat data and spectral mixture analysis to detect both degradation and deforestation in forested landscapes. The Landsat data are transformed into spectral endmember fractions and are used to calculate the Normalized Degradation Fraction Index (NDFI; Souza et al., 2005). The spectrally unmixed data are used for disturbance monitoring and land cover classification via time series analysis. To assess the performance of the system, maps of deforestation and degradation were used to stratify the study area for collection of sample data to which unbiased estimators were applied to produce accuracy and area estimates of degradation and deforestation from 1990 to 2013. The approach extends previous research in spectral mixture analysis for identifying forest degradation to the temporal domain. The method was applied using the Google Earth Engine and tested in the Brazilian State of Rondonia. Degradation and deforestation were mapped with 88.0% and 93.3% User's Accuracy, and 68.1% and 85.3% Producer's Accuracy. Area estimates of degradation and deforestation were produced with margins of error of 13.9% and 5.3%, respectively, over the 24 year time period. These results indicate that for Rondonia a decreasing trend in deforestation after 2004 corresponds to an increase in degradation during the same time period.
引用
收藏
页数:16
相关论文
共 64 条
[1]  
Aalders E., 2015, Verification of Interim REDD+ Performance Indicators under the Guyana-Norway REDD+ Partnership
[2]  
ADAMS JB, 1986, J GEOPHYS RES-SOLID, V91, P8098, DOI 10.1029/JB091iB08p08098
[3]  
[Anonymous], P ESAS LIV PLAN S
[4]  
[Anonymous], C PART 16 SESS CANC
[5]  
[Anonymous], PLAN PREVENTION CONT
[6]  
[Anonymous], REMOTE SENS EN UNPUB
[7]  
[Anonymous], 2000, DEFORESTATION ESTIMA
[8]  
[Anonymous], 2014, Framework Convention on Climate Change, P44
[9]  
[Anonymous], 9 S BRAS SENS REM SA
[10]  
[Anonymous], REV