Existence and estimates of solutions to a singular Dirichlet problem for the Monge-Ampere equation

被引:33
作者
Mohammed, Ahmed [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
关键词
singular boundary value problem; Monge-Ampere equation;
D O I
10.1016/j.jmaa.2007.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a strictly convex, smooth, and bounded domain Omega in R-n we establish the existence of a negative convex solution in C-infinity Omega boolean AND C((Omega) over bar) with zero boundary value to the singular Monge-Ampere equation det(D(2)u) = p(x)g(-u). An associated Dirichlet problem will be employed to provide a necessary and sufficient condition for the solvability of the singular boundary value problem. Estimates of solutions will also be given and regularity of solutions will be deduced from the estimates. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1226 / 1234
页数:9
相关论文
共 23 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[2]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[3]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[4]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[5]  
CUI SB, 1993, NONLINEAR ANAL-THEOR, V21, P181
[6]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176
[7]   AN ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J].
DIAZ, JI ;
MOREL, JM ;
OSWALD, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1987, 12 (12) :1333-1344
[8]  
Fulks W., 1960, Osaka Math J, V12, P1
[9]   On a class of sublinear singular elliptic problems with convection term [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :635-646
[10]   Bifurcation for a class of singular elliptic problems with quadratic convection term [J].
Ghergu, M ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (11) :831-836