SSVEP-EEG Signal Classification based on Emotiv EPOC BCI and Raspberry Pi

被引:7
作者
Asanza, Victor [1 ]
Aviles-Mendoza, Karla [2 ]
Trivino-Gonzalez, Hector [2 ]
Rosales-Uribe, Felix [1 ]
Torres-Brunes, Jamil [2 ]
Loayza, Francis R. [2 ]
Pelaez, Enrique [1 ]
Cajo, Ricardo [1 ,3 ]
Tinoco-Egas, Raquel [4 ]
机构
[1] Escuela Super Politecn Litoral, ESPOL, Fac Ingn Elect & Comp, Campus Gustavo Galindo Km 30-5 Via Perimetral,POB, Guayaquil, Ecuador
[2] Escuela Super Politecn Litoral, Neuroimaging & Bioengn Lab, LNB, Fac Ingn Mecan & Ciencias Prod,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral,POB, Guayaquil, Ecuador
[3] Univ Ghent, Dept Electromech Syst & Met Engn, Tech Lane Sci Pk 125, B-9052 Ghent, Belgium
[4] Univ Tecn Machala, UTMACH, Av Panamer Km 5 1-2 Via Pasaje Machala, El Oro, Ecuador
关键词
Brain Computer Interface; SSVEP-EEG; Classification; Machine Learning; Data acquisition; XGBoost;
D O I
10.1016/j.ifacol.2021.10.287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the experimental design for recording Electroencephalography (EEG) signals in 20 test subjects submitted to Steady-state visually evoked potential (SSVEP). The stimuli were performed with frequencies of 7, 9, 11 and 13 Hz. Furthermore, the implementation of a classification system based on SSVEP-EEG signals from the occipital region of the brain obtained with the Emotiv EPOC device is presented. These data were used to train algorithms based on artificial intelligence in a Raspberry Pi 4 Model B. Finally, this work demonstrates the possibility of classifying with times of up to 1.8 ms in embedded systems with low computational capacity. Copyright (C) 2021 The Authors.
引用
收藏
页码:388 / 393
页数:6
相关论文
共 21 条
[1]   Deep learning for motor imagery EEG-based classification: A review [J].
Al-Saegh, Ali ;
Dawwd, Shefa A. ;
Abdul-Jabbar, Jassim M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
[2]  
Alcivar-Molina E., 2018, 2018 IEEE 3 ECUADOR, P1
[3]   Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition [J].
Artoni, Fiorenzo ;
Delorme, Arnaud ;
Makeig, Scott .
NEUROIMAGE, 2018, 175 :176-187
[4]  
Asanza V, 2020, INT CONF EDEMOC EGOV, P87, DOI 10.1109/ICEDEG48599.2020.9096752
[5]  
Asanza V, 2017, 2017 IEEE SECOND ECUADOR TECHNICAL CHAPTERS MEETING (ETCM)
[6]   Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm [J].
Chen, Xiaogang ;
Zhao, Bing ;
Wang, Yijun ;
Gao, Xiaorong .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
[7]   Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI [J].
Chen, Xiaogang ;
Zhao, Bing ;
Wang, Yijun ;
Xu, Shengpu ;
Gao, Xiaorong .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2018, 28 (08)
[8]   Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface [J].
Chen, Xiaogang ;
Wang, Yijun ;
Gao, Shangkai ;
Jung, Tzyy-Ping ;
Gao, Xiaorong .
JOURNAL OF NEURAL ENGINEERING, 2015, 12 (04)
[9]   Wavlet phase-locking based binary classification of hand movement directions from EEG [J].
Chouhan, Tushar ;
Robinson, Neethu ;
Vinod, A. P. ;
Ang, Kai Keng ;
Guan, Cuntai .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
[10]   A study on performance increasing in SSVEP based BCI application [J].
Erkan, Erdem ;
Akbaba, Mehmet .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2018, 21 (03) :421-427