The Radon transform on Zkn

被引:1
作者
Dedeo, MR [1 ]
Velasquez, E [1 ]
机构
[1] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
关键词
Radon transform; invertibility; Fourier transform;
D O I
10.1137/S0895480103430764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Radon transform on Z(n)(k) averages a function over its values on a translate of a fixed subset S in Z(n)(k). We discuss invertibility conditions and computer inverse formulas based on the Moore-Penrose inverse and on linear algorithms. We expect the results to be of use in directional and toroidal time series.
引用
收藏
页码:472 / 478
页数:7
相关论文
共 9 条
[1]  
DEDEO MR, 2002, C NUMER, V156, P201
[2]   THE RADON-TRANSFORM ON Z2K [J].
DIACONIS, P ;
GRAHAM, RL .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 118 (02) :323-345
[3]   KRAWTCHOUK POLYNOMIAL ADDITION THEOREM AND WREATH PRODUCTS OF SYMMETRIC GROUPS [J].
DUNKL, CF .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (04) :335-358
[4]   A DISCRETE GELFAND-LEVITAN METHOD FOR BAND-MATRIX INVERSE EIGENVALUE PROBLEMS [J].
GLADWELL, GML ;
WILLMS, NB .
INVERSE PROBLEMS, 1989, 5 (02) :165-179
[5]  
MacWilliams F.J., 1977, THEORY ERROR CORRECT
[6]   ON BAND MATRICES AND THEIR INVERSES [J].
ROZSA, P ;
BEVILACQUA, R ;
ROMANI, F ;
FAVATI, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 150 :287-295
[7]  
STANTON D, 1990, NATO ADV SCI I C-MAT, V294, P419
[8]  
STANTON D, 1984, SPECIAL FUNCTIONS GR, P87, DOI DOI 10.1007/978-94-010-9787-1_2
[9]  
[No title captured]