Mechanochemical N-Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X-ray Diffraction and Raman Spectroscopy

被引:17
|
作者
Martins, Ines C. B. [2 ,6 ]
Carta, Maria [1 ]
Haferkamp, Sebastian [2 ]
Feiler, Torvid [2 ,3 ]
Delogu, Francesco [1 ,4 ,5 ]
Colacino, Evelina [7 ]
Emmerling, Franziska [2 ,3 ]
机构
[1] Univ Cagliari, Dipartimento Ingn Meccan Chim & Mat, I-09123 Cagliari, Italy
[2] BAM Fed Inst Mat Res & Testing, D-12489 Berlin, Germany
[3] Humboldt Univ, Dept Chem, D-12489 Berlin, Germany
[4] Consorzio Interuniv Sviluppo Sistemi Grande Inter, I-50019 Sesto Fiorentino, Italy
[5] Cagliari Res Unit, I-09123 Cagliari, Italy
[6] Univ Copenhagen, Fac Hlth & Med Sci, Dept Pharm, DK-2200 Copenhagen, Denmark
[7] Univ Montpellier, ENSCM, CNRS, ICGM, F-34090 Montpellier, France
关键词
Mechanochemistry; In situ real-time monitoring; N-Chlorination; Kinetics; Hydantoin; Powder X-ray diffraction; Raman spectroscopy; MECHANOSYNTHESIS; BALL; TEMPERATURE; AUXILIARIES; ADDITIVES; CHEMISTRY;
D O I
10.1021/acssuschemeng.1c03812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The crystal structure of the starting material EDMH and the 1-chloro-3-ethyl-5,5'-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed.
引用
收藏
页码:12591 / 12601
页数:11
相关论文
共 50 条
  • [21] In Situ Real-Time X-Ray Diffraction During Thin Film Growth of Pentacene
    Watanabe, T.
    Hosokai, T.
    Koganezawa, T.
    Yoshimoto, N.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2012, 566 : 18 - 21
  • [22] Kinetic study of the intercalation of cobaltocene by layered metal dichalcogenides with time-resolved in situ X-ray powder diffraction
    Evans, JSO
    Price, SJ
    Wong, HV
    O'Hare, D
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (42) : 10837 - 10846
  • [23] Characterisation of LaGdO3 by X-ray powder diffraction and Raman spectroscopy
    Tompsett, GA
    Phillips, RJ
    Sammes, NM
    Cartner, AM
    SOLID STATE COMMUNICATIONS, 1998, 108 (09) : 655 - 660
  • [24] Kinetic study of the thermal transformation of limonite to hematite by X-ray diffraction, μ-Raman and Mossbauer spectroscopy
    Palacios, P. R.
    Bustamante, Angel
    Romero-Gomez, P.
    Gonzalez, J. C.
    HYPERFINE INTERACTIONS, 2011, 203 (1-3): : 113 - 118
  • [25] Monitoring polymer-assisted mechanochemical cocrystallisation through in situ X-ray powder diffraction
    Germann, Luzia S.
    Emmerling, Sebastian T.
    Wilke, Manuel
    Dinnebier, Robert E.
    Moneghini, Mariarosa
    Hasa, Dritan
    CHEMICAL COMMUNICATIONS, 2020, 56 (62) : 8743 - 8746
  • [26] Electrochemical in situ reaction cell for X-ray scattering, diffraction and spectroscopy
    Braun, A
    Shrout, S
    Fowlks, AC
    Osaisai, BA
    Seifert, S
    Granlund, E
    Cairns, EJ
    JOURNAL OF SYNCHROTRON RADIATION, 2003, 10 : 320 - 325
  • [27] Real-Time Data Processing for X-Ray Spectroscopy
    Adams, J. S.
    Bandler, S. R.
    Brown, L. E.
    Boyce, K. R.
    Chiao, M. P.
    Doriese, W. B.
    Eckart, M. E.
    Hilton, G. C.
    Kelley, R. L.
    Kilbourne, C. A.
    Porter, F. S.
    Rabin, M. W.
    Smith, S. J.
    Stewart, D. D.
    Ullom, J. N.
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 274 - +
  • [28] REAL-TIME X-RAY SYNCHROTRON POWDER DIFFRACTION STUDIES OF THE DEHYDRATION PROCESSES IN SCOLECITE AND MESOLITE
    STAHL, K
    HANSON, J
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 : 543 - 550
  • [29] In situ X-ray Diffraction, DSC and Raman Spectroscopy Thermal Investigation of Chlorpropamide
    Caetano, Marcia
    Ayala, Alejandro P.
    Mendes Filho, Josue
    Faudone, S.
    Sperandeo, N. R.
    Cuffini, Silvia
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C337 - C337
  • [30] REAL-TIME IN-SITU X-RAY-DIFFRACTION STUDY OF POLYETHYLENE DEFORMATION
    VICKERS, ME
    FISCHER, H
    POLYMER, 1995, 36 (13) : 2667 - 2670