Mechanochemical N-Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X-ray Diffraction and Raman Spectroscopy

被引:17
|
作者
Martins, Ines C. B. [2 ,6 ]
Carta, Maria [1 ]
Haferkamp, Sebastian [2 ]
Feiler, Torvid [2 ,3 ]
Delogu, Francesco [1 ,4 ,5 ]
Colacino, Evelina [7 ]
Emmerling, Franziska [2 ,3 ]
机构
[1] Univ Cagliari, Dipartimento Ingn Meccan Chim & Mat, I-09123 Cagliari, Italy
[2] BAM Fed Inst Mat Res & Testing, D-12489 Berlin, Germany
[3] Humboldt Univ, Dept Chem, D-12489 Berlin, Germany
[4] Consorzio Interuniv Sviluppo Sistemi Grande Inter, I-50019 Sesto Fiorentino, Italy
[5] Cagliari Res Unit, I-09123 Cagliari, Italy
[6] Univ Copenhagen, Fac Hlth & Med Sci, Dept Pharm, DK-2200 Copenhagen, Denmark
[7] Univ Montpellier, ENSCM, CNRS, ICGM, F-34090 Montpellier, France
关键词
Mechanochemistry; In situ real-time monitoring; N-Chlorination; Kinetics; Hydantoin; Powder X-ray diffraction; Raman spectroscopy; MECHANOSYNTHESIS; BALL; TEMPERATURE; AUXILIARIES; ADDITIVES; CHEMISTRY;
D O I
10.1021/acssuschemeng.1c03812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The crystal structure of the starting material EDMH and the 1-chloro-3-ethyl-5,5'-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed.
引用
收藏
页码:12591 / 12601
页数:11
相关论文
共 50 条
  • [21] Study of the conversion of N-carbamoyl-L-proline to hydantoin-L-proline using powder synchrotron X-ray diffraction
    Seijas, Luis E.
    Mora, Asiloe J.
    Delgado, Gerzon E.
    Brunelli, Michela
    Fitch, Andrew N.
    POWDER DIFFRACTION, 2010, 25 (04) : 342 - 348
  • [22] In situ infrared, Raman and X-ray spectroscopy for the mechanistic understanding of hydrogen evolution reaction
    Haryanto, Andi
    Jung, Kyounghoon
    Lee, Chan Woo
    Kim, Dong-Wan
    JOURNAL OF ENERGY CHEMISTRY, 2024, 90 : 632 - 651
  • [23] Investigation into coals of different ranks using FTIR and Raman spectroscopy, X-ray diffraction and thermo-kinetic analyses
    Balogun, Ayokunle O.
    Sotoudehniakarani, Farid
    McDonald, Armando G.
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2021, 26 (04) : 453 - 468
  • [24] Influence of sample characteristics on quantification of carbamazepine hydrate formation by X-ray powder diffraction and Raman spectroscopy
    Tian, F.
    Zhang, F.
    Sandler, N.
    Gordon, K. C.
    McGoverin, C. M.
    Strachan, C. J.
    Saville, D. J.
    Rades, T.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2007, 66 (03) : 466 - 474
  • [25] In Situ Observation of ZnO Nanoparticle Formation by a Combination of Time-Resolved X-ray Absorption Spectroscopy and X-ray Diffraction
    Eckelt, Franz
    Rothweiler, Patrick
    Braun, Frederic
    Voss, Lukas
    Saric, Ankica
    Vrankic, Martina
    Luetzenkirchen-Hecht, Dirk
    MATERIALS, 2022, 15 (22)
  • [26] In situ characterization of phase transitions in cristobalite under high pressure by Raman spectroscopy and X-ray diffraction
    Prokopenko, VB
    Dubrovinsky, LS
    Dmitriev, V
    Weber, HP
    JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 327 (1-2) : 87 - 95
  • [27] Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction
    Tomic, Zorica
    Makreski, Petre
    Gajic, Bosko
    JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (05) : 582 - 586
  • [28] X-ray powder diffraction, FTIR, and raman study of strontium boroarsenate, SrBAsO5
    B. Birsöz
    A. Baykal
    Russian Journal of Inorganic Chemistry, 2008, 53
  • [29] Investigation of the Kinetic Stabilization of a Ce4+-based MOF by in-situ Powder X-ray Diffraction
    Heidenreich, Niclas
    Waitschat, Steve
    Reinsch, Helge
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2018, 644 (24): : 1826 - 1831
  • [30] X-ray powder diffraction, FTIR, and raman study of strontium boroarsenate, SrBAsO5
    Birsoez, B.
    Baykal, A.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2008, 53 (07) : 1009 - 1012