On the geometry of motions in one integrable problem of the rigid body dynamics

被引:0
作者
Kharlamova, I. I. [1 ]
Savushkin, A. Y. [1 ]
机构
[1] Russian Acad Natl Econ & Publ Adm, Volgograd Branch, Volgograd, Russia
关键词
Rigid body; Hodograph method; Partial motions; Decomposition; TOP;
D O I
10.1016/j.geomphys.2014.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Due to Poinsot's theorem, the motion of a rigid body about a fixed point is represented as rolling without slipping of the moving hodograph of the angular velocity over the fixed one. If the moving hodograph is a closed curve, visualization of motion is obtained by the method of P.V. Kharlamov. For an arbitrary motion in an integrable problem with an axially symmetric force field the moving hodograph densely fills some two-dimensional surface and the fixed one fills a three-dimensional surface. In this paper, we consider the irreducible integrable case in which both hodographs are two-frequency curves. We obtain the equations of bearing surfaces, illustrate the main types of these surfaces. We propose a method of the so-called non-straight geometric interpretation representing the motion of a body as a superposition of two periodic motions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 15 条
[1]  
Gashenenko I. N., 2012, Classical Problems of Rigid Body Dynamics
[2]  
Gashenenko I.N., 1990, MEKH TVERD TELA, V22, P1
[3]  
Gashenenko I.N., 1988, MEKH TVERD TELA, V20, P29
[4]  
Gashenenko I.N., 1986, MEKH TVERD TELA, V18, P3
[5]  
Gorr G.V., 1978, THEIR DEV CURRENT ST
[6]  
Kharlamov M.P., 1983, P IUTAM ISIMM S MOD, V2, P535
[7]  
Kharlamov M. P., 2004, UKRAINIAN MATH B, V1, P564
[8]  
Kharlamov M. P., 2002, MEKH TVERD TELA, V32, P32
[9]  
[Харламов Михаил Павлович Kharlamov Mikhail P.], 2011, [Нелинейная динамика, Russian Journal of Nonlinear Dynamics, Nelineinaya dinamika], V7, P25
[10]   Bifurcation diagrams of the Kowalevski top in two constant fields [J].
Kharlamov, MP .
REGULAR & CHAOTIC DYNAMICS, 2005, 10 (04) :381-398