A convergence theorem for Markov chains arising in population genetics and the coalescent with selfing

被引:69
作者
Mohle, M
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
关键词
coalescent; diploid population models; genealogical process; population genetics; robustness; selfing;
D O I
10.1239/aap/1035228080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A simple convergence theorem for sequences of Markov chains is presented in order to derive new 'convergence-to-the-coalescent' results for diploid neutral population models. For the so-called diploid Wright-Fisher model with selfing probability s and mutation rate theta, it is shown that the ancestral structure of n sampled genes can be treated in the framework of an n-coalescent with mutation rate <(theta)over tilde> := theta(1 - s/2), if the population size N is large and if the time is measured in units of (2 - s)N generations.
引用
收藏
页码:493 / 512
页数:20
相关论文
共 15 条
[1]  
Brown A. H. D., 1990, Plant population genetics, breeding, and genetic resources., P145
[2]   MEASURING PLANT MATING SYSTEMS [J].
CLEGG, MT .
BIOSCIENCE, 1980, 30 (12) :814-818
[3]   Coalescents and genealogical structure under neutrality [J].
Donnelly, P ;
Tavare, S .
ANNUAL REVIEW OF GENETICS, 1995, 29 :401-421
[4]  
Griffiths RC, 1997, PROGR POPULATION GEN, P257
[5]  
HUDSON RR, 1988, GENETICS, V120, P831
[6]  
Kingman J.F., 1982, J. Appl. Probab., P27, DOI [DOI 10.2307/3213548, 10.2307/3213548]
[7]  
Kingman J.F., 1982, Stochastic Process. Appl., V13, P235, DOI [DOI 10.1016/0304-4149(82)90011-4, 10.1016/0304-4149(82)90011-4]
[8]  
Kingman J.F. C., 1982, EXCHANGEABILITY PROB, P97
[9]  
Milligan BG, 1996, GENETICS, V142, P619
[10]   Coalescent results for two-sex population models [J].
Mohle, M .
ADVANCES IN APPLIED PROBABILITY, 1998, 30 (02) :513-520