Maximization problems of balancing submodular relevance and supermodular diversity

被引:6
作者
Liu, Zhicheng [1 ]
Guo, Longkun [2 ]
Du, Donglei [3 ]
Xu, Dachuan [4 ]
Zhang, Xiaoyan [5 ,6 ]
机构
[1] Nanjing Normal Univ, Coll Taizhou, Taizhou 225300, Peoples R China
[2] Fuzhou Univ, Sch Comp Sci & Bigdata, Fuzhou 350116, Peoples R China
[3] Univ New Brunswick, Fac Management, Fredericton, NB E3B 5A3, Canada
[4] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
[5] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[6] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
基金
加拿大自然科学与工程研究理事会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
submodular; Max-sum diversification; Greedy algorithm; Local search; Supermodular; Curvature; Matroid; APPROXIMATION; ALGORITHMS;
D O I
10.1007/s10898-021-01063-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Relevance and diversity are two desirable properties in data retrieval applications, an important field in data science and machine learning. In this paper, we consider three maximization problems to balance these two factors. The objective function in each problem is the sum of a monotone submodular function f and a supermodular function g, where f and g capture the relevance and diversity of any feasible solution, respectively. In the first problem, we consider a special supermodular diversity function g of a sum-sum format satisfying the relaxed triangle inequality, for which we propose a greedy-type approximation algorithm with an (1 -1/e, 1/(2 alpha))-bifactor approximation ratio, improving the previous (1/(2 alpha), 1/(2 alpha))-bifactor approximation ratio. In the second problem, we consider an arbitrary supermodular diversity function g, for which we propose a distorted greedy method to give a min {1 - k(f)e(-1), 1 - k(g)e(-(1-kg))}-approximation algorithm, improving the previous k(f)(-1) (1 - e(-kf(1-kg)))-approximation ratio, where k(f) and k(g) are the curvatures of the submodular function f and the supermodular funciton g, respectively. In the third problem, we generalize the uniform matroid constraint to the p matroid constraints, for which we present a local search algorithm to improve the previous 1-k(g)/(1-k(g))k(f)+p-approximation ratio to min {p+1-k(f)/p(p+1), (1-k(g)/p + k(g)(1-k(g))(2)/p+(1-k(g))(2))}.
引用
收藏
页码:179 / 194
页数:16
相关论文
共 25 条
  • [1] Bai W., 2018, P 35 INT C MACHINE L, P304
  • [2] Approximation of geometric dispersion problems
    Baur, C
    Fekete, SP
    [J]. ALGORITHMICA, 2001, 30 (03) : 451 - 470
  • [3] Bhattacharya S., 2011, P 20 INT C WORLD WID, P317
  • [4] Bilmes Jeffrey, 2017, ARXIV170108939
  • [5] An Improved Analysis for a Greedy Remote-Clique Algorithm Using Factor-Revealing LPs
    Birnbaum, Benjamin
    Goldman, Kenneth J.
    [J]. ALGORITHMICA, 2009, 55 (01) : 42 - 59
  • [6] Max-Sum Diversification, Monotone Submodular Functions, and Dynamic Updates
    Borodin, Allan
    Jain, Aadhar
    Lee, Hyun Chul
    Ye, Yuli
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [7] MapReduce and Streaming Algorithms for Diversity Maximization in Metric Spaces of Bounded Doubling Dimension
    Ceccarello, Matteo
    Pietracaprina, Andrea
    Pucci, Geppino
    Upfal, Eli
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (05): : 469 - 480
  • [8] Cevallos A, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P130
  • [9] Chen WL, 2015, JMLR WORKSH CONF PRO, V38, P156
  • [10] SUBMODULAR SET-FUNCTIONS, MATROIDS AND THE GREEDY ALGORITHM - TIGHT WORST-CASE BOUNDS AND SOME GENERALIZATIONS OF THE RADO-EDMONDS THEOREM
    CONFORTI, M
    CORNUEJOLS, G
    [J]. DISCRETE APPLIED MATHEMATICS, 1984, 7 (03) : 251 - 274