Carbon coated porous SnO2 nanosheet arrays on carbon cloth towards enhanced lithium storage performance

被引:12
作者
Fan, Lishuang [1 ,2 ]
Guo, Zhikun [1 ]
Zhang, Yu [1 ]
Zhang, Xinyu [1 ]
Wang, Maoxu [1 ]
Yin, Yanyou [1 ]
Zhang, Naiqing [1 ,2 ]
Sun, Kening [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Urban Water Resource & Environm, Harbin, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Tin oxide; Nanoarrays; Carbon coating; Anodes; Lithium ion batteries; ANODE MATERIAL; MESOPOROUS SNO2; ION BATTERIES; YOLK-SHELL; CORE-SHELL; COMPOSITE; CAPACITY; OXIDE; NANOWIRES; NANOTUBES;
D O I
10.1016/j.mtener.2019.100344
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2 is viewed as a developing anode material due to high theoretical capacity of 1494 mAh g(-1). However, the volume change during the lithiation/delithiation causes the active material aggregation and cracking, which lead to a rapid capacity fade. Meanwhile, the poor electrical conductivity of SnO2 is another weakness which deteriorates the electrochemical performance. Herein, to overcome these shortcomings, the self-supported carbon coated porous SnO2 nanosheet arrays (C@SnO2@CC) are prepared by CO2 assisted anneal strategy. Porous SnO2 nanosheet arrays can provide more active sites and large specific surface area for electrochemical reaction, and the nanostructure shortens electronic and ionic transport length. Moreover, the carbon coating layer not only enhances the electrical conductivity but also buffers the volume expansion of SnO2 upon lithiation. Consequently, the porous C@SnO2@CC electrode delivers a high specific capacity of 1096.6 mAh g(-1) and remains at 975.0 mAh g(-1) after 120 cycles at 1 A g(-1). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[3]   Large-Scale Fabrication of Core-Shell Structured C/SnO2 Hollow Spheres as Anode Materials with Improved Lithium Storage Performance [J].
Cheng, Yong ;
Li, Qian ;
Wang, Chunli ;
Sun, Lianshan ;
Yi, Zheng ;
Wang, Limin .
SMALL, 2017, 13 (47)
[4]   Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation [J].
Deng Xin ;
Liu XingRui ;
Yan HuiJuan ;
Wang Dong ;
Wan LiJun .
SCIENCE CHINA-CHEMISTRY, 2014, 57 (01) :178-183
[5]   Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries [J].
Dirican, Mahmut ;
Yanilmaz, Meltem ;
Fu, Kun ;
Lu, Yao ;
Kizil, Huseyin ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2014, 264 :240-247
[6]   Graphene Aerogels with Anchored Sub-Micrometer Mulberry-Like ZnO Particles for High-Rate and Long-Cycle Anode Materials in Lithium Ion Batteries [J].
Fan, Lishuang ;
Zhang, Yu ;
Zhang, Qi ;
Wu, Xian ;
Cheng, Junhan ;
Zhang, Naiqing ;
Feng, Yujie ;
Sun, Kening .
SMALL, 2016, 12 (37) :5208-5216
[7]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[8]   Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition [J].
Guan, Cao ;
Wang, Xinghui ;
Zhang, Qing ;
Fan, Zhanxi ;
Zhang, Hua ;
Fan, Hong Jin .
NANO LETTERS, 2014, 14 (08) :4852-4858
[9]   Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors [J].
Hou, Jianhua ;
Cao, Chuanbao ;
Idrees, Faryal ;
Ma, Xilan .
ACS NANO, 2015, 9 (03) :2556-2564
[10]   Designed synthesis of SnO2-C hollow microspheres as an anode material for lithium-ion batteries [J].
Hu, Lin-Lin ;
Yang, Li-Ping ;
Zhang, Dong ;
Tao, Xian-Sen ;
Zeng, Chen ;
Cao, An-Min ;
Wan, Li-Jun .
CHEMICAL COMMUNICATIONS, 2017, 53 (81) :11189-11192