A Riemann-Roch theorem for the noncommutative two torus

被引:5
作者
Khalkhali, Masoud [1 ]
Moatadelro, Ali [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 3K7, Canada
关键词
Noncommutative geometry; Riemann-Roch theorem; Curved noncommutative torus; Heat equation; GEOMETRY; 2-TORI;
D O I
10.1016/j.geomphys.2014.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the analogue of the Riemann-Roch formula for the noncommutative two torus A(theta) = C(T-theta(2)) equipped with an arbitrary translation invariant complex structure and a Weyl factor represented by a positive element k is an element of C-infinity (T-theta(2)). We consider a topologically trivial line bundle equipped with a general holomorphic structure and the corresponding twisted Dolbeault Laplacians. We define a spectral triple (A(theta), H, D) that encodes the twisted Dolbeault complex of A(theta) and whose index gives the left hand side of the Riemann-Roch formula. Using Connes' pseudodifferential calculus and heat equation techniques, we explicitly compute the b(2) terms of the asymptotic expansion of Tr(e(-tD2)). We find that the curvature term on the right hand side of the Riemann-Roch formula coincides with the scalar curvature of the noncommutative torus recently defined and computed in Connes and Moscovici (2014) and independently computed in Fathizadeh and Khalkhali (2014). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
[21]   Skein modules and the noncommutative torus [J].
Frohman, C ;
Gelca, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4877-4888
[22]   Matrix theory on noncommutative torus [J].
Kawano, T ;
Okuyama, K .
PHYSICS LETTERS B, 1998, 433 (1-2) :29-34
[23]   Spectral Distances: Results for Moyal Plane and Noncommutative Torus [J].
Cagnache, Eric ;
Wallet, Jean-Christophe .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[24]   Classification of spin structures on the noncommutative n-torus [J].
Venselaar, Jan Jitse .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (03) :787-816
[25]   On the scalar curvature for the noncommutative four torus [J].
Fathizadeh, Farzad .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[26]   L-2-RIEMANN-ROCH FOR SINGULAR COMPLEX CURVES [J].
Ruppenthal, Jean ;
Sera, Martin .
JOURNAL OF SINGULARITIES, 2015, 11 :67-84
[27]   Weyl's Law and Connes' Trace Theorem for Noncommutative Two Tori [J].
Fathizadeh, Farzad ;
Khalkhali, Masoud .
LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (01) :1-18
[28]   On spin structures and dirac operators on the noncommutative torus [J].
Paschke, Mario ;
Sitarz, Andrzej .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) :317-327
[29]   On Spin Structures and Dirac Operators on the Noncommutative Torus [J].
Mario Paschke ;
Andrzej Sitarz .
Letters in Mathematical Physics, 2006, 77 :317-327
[30]   Matrix model and Yukawa couplings on the noncommutative torus [J].
Masaki Honda .
Journal of High Energy Physics, 2019