On super-weakly compact sets and uniformly convexifiable sets

被引:32
作者
Cheng, Lixin [1 ]
Cheng, Qingjin [1 ]
Wang, Bo [1 ]
Zhang, Wen [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
finite representability; weakly compact set; uniformly convexifiable set; Banach space;
D O I
10.4064/sm199-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper mainly concerns the topological nature of uniformly convexifiable sets in general Banach spaces: A sufficient and necessary condition for a bounded closed convex set C of a Banach space X to be uniformly convexifiable (i.e. there exists an equivalent norm on X which is uniformly convex on C) is that the set C is super-weakly compact, which is defined using a generalization of finite representability. The proofs use appropriate versions of classical theorems, such as James' finite tree theorem, Enflo's renorming technique, Grothendieck's lemma and the Davis-Figiel-Johnson-Pelczyliski lemma.
引用
收藏
页码:145 / 169
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1976, GEOMETRY BANACH SPAC
[2]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[3]  
Beauzamy B., 1985, N HOLLAND MATH STUD, V68
[4]  
Benyamini Y., 2000, American Mathematical Society Colloquium Publications, V48
[5]  
Chen LX, 1998, ACTA MATH SIN, V14, P47
[6]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[7]  
Davis W. J., 1974, Journal of Functional Analysis, V17, P311, DOI 10.1016/0022-1236(74)90044-5
[8]  
Deville R., 1993, PITMAN MONOGR SURVEY, V64
[9]  
Diestel J, 1977, MATH SURVEYS AM MATH
[10]   BANACH SPACES WHICH CAN BE GIVEN AN EQUIVALENT UNIFORMLY CONVEX NORM [J].
ENFLO, P .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :281-288