Magnetoencephalographic signals predict movement trajectory in space

被引:71
作者
Georgopoulos, AP
Langheim, FJP
Leuthold, AC
Merkle, AN
机构
[1] Vet Affairs Med Ctr, Domenici Res Ctr Mental Illness, Brain Sci Ctr 11B, Minneapolis, MN 55417 USA
[2] Univ Minnesota, Sch Med, Dept Neurosci, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Sch Med, Dept Neurol, Minneapolis, MN 55455 USA
关键词
magnetoencephalography; MEG; hand movement; copying;
D O I
10.1007/s00221-005-0028-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-machine interface (BMI) efforts have been focused on using either invasive implanted electrodes or training-extensive conscious manipulation of brain rhythms to control prosthetic devices. Here we demonstrate an excellent prediction of movement trajectory by real-time magnetoencephalography (MEG). Ten human subjects copied a pentagon for 45 s using an X-Y joystick while MEG signals were being recorded from 248 sensors. A linear summation of weighted contributions of the MEG signals yielded a predicted movement trajectory of high congruence to the actual trajectory (median correlation coefficient: r = 0.91 and 0.97 for unsmoothed and smoothed predictions, respectively). This congruence was robust since it remained high in cross-validation analyses (based on the first half of data to predict the second half; median correlation coefficient: r = 0.76 and 0.85 for unsmoothed and smoothed predictions, respectively).
引用
收藏
页码:132 / 135
页数:4
相关论文
共 10 条
[1]  
GEORGOPOULOS AP, 1988, J NEUROSCI, V8, P2928
[2]   An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI) [J].
Hinterberger, T ;
Weiskopf, N ;
Veit, R ;
Wilhelm, B ;
Betta, E ;
Birbaumer, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :971-974
[3]  
LEUTHOLD AC, 2003, SOC NEUR ABSTR
[4]   Spatial filter selection for EEG-based communication [J].
McFarland, DJ ;
McCane, LM ;
David, SV ;
Wolpaw, JR .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (03) :386-394
[5]   Anasynchronously controlled EEG-based virtual keyboard:: Improvement of the spelling rate [J].
Scherer, R ;
Müller, GR ;
Neuper, C ;
Graimann, B ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :979-984
[6]   Direct cortical control of 3D neuroprosthetic devices [J].
Taylor, DM ;
Tillery, SIH ;
Schwartz, AB .
SCIENCE, 2002, 296 (5574) :1829-1832
[7]   Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex [J].
Vetter, RJ ;
Williams, JC ;
Hetke, JF ;
Nunamaker, EA ;
Kipke, DR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :896-904
[8]   Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys [J].
Wessberg, J ;
Nicolelis, MAL .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (06) :1022-1035
[9]   Brain-computer interface technology: A review of the first international meeting [J].
Wolpaw, JR ;
Birbaumer, N ;
Heetderks, WJ ;
McFarland, DJ ;
Peckham, PH ;
Schalk, G ;
Donchin, E ;
Quatrano, LA ;
Robinson, CJ ;
Vaughan, TM .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (02) :164-173
[10]   Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans [J].
Wolpaw, JR ;
McFarland, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (51) :17849-17854