3-Regular digraphs with optimum skew energy

被引:36
|
作者
Gong, Shi-Cai [1 ]
Xu, Guang-Hui [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
关键词
Digraph; Adjacency matrix; Skew-adjacency matrix; Energy; Skew energy; WEIGHING MATRICES; GRAPHS;
D O I
10.1016/j.laa.2011.03.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The skew energy of a digraph D is defined as the sum of the singular values of its skew adjacency matrix S(D). In this paper, we first interpret the entries of the power of the skew adjacency matrix of a digraph in terms of the number of its walks and then focus on the question posed by Adiga et al. [C. Adiga, R. Balakrishnan, Wasin So, The skew energy of a graph, Linear Algebra Appl. 432 (2010) 1825-1835] of determining all 3-regular connected digraphs with optimum skew energy. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 50 条
  • [21] Walk Regular Digraphs
    Liu, Wen
    Lin, Jing
    ARS COMBINATORIA, 2010, 95 : 97 - 102
  • [22] BOUNDS FOR THE SIGNLESS LAPLACIAN ENERGY OF DIGRAPHS
    Xi, Weige
    Wang, Ligong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (03) : 411 - 421
  • [23] Linear arboricity of regular digraphs
    Wei Hua He
    Hao Li
    Yan Dong Bai
    Qiang Sun
    Acta Mathematica Sinica, English Series, 2017, 33 : 501 - 508
  • [24] Linear Arboricity of Regular Digraphs
    He, Wei Hua
    Li, Hao
    Bai, Yan Dong
    Sun, Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (04) : 501 - 508
  • [25] Linear Arboricity of Regular Digraphs
    Wei Hua HE
    Hao LI
    Yan Dong BAI
    Qiang SUN
    Acta Mathematica Sinica,English Series, 2017, (04) : 501 - 508
  • [26] A General Method for Computing the Homfly Polynomial of DNA Double Crossover 3-Regular Links
    Li, Meilian
    Deng, Qingying
    Jin, Xian'an
    PLOS ONE, 2015, 10 (05):
  • [27] On the spectral radius and energy of digraphs
    Carmona, Juan R.
    Rodriguez, Jonnathan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) : 4792 - 4803
  • [28] Discrepancy Properties for Random Regular Digraphs
    Cook, Nicholas A.
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (01) : 23 - 58
  • [29] Weakly distance-regular digraphs
    Comellas, F
    Fiol, MA
    Gimbert, J
    Mitjana, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (02) : 233 - 255
  • [30] Bounds for the signless Laplacian energy of digraphs
    Weige Xi
    Ligong Wang
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 411 - 421