Isometries and Toeplitz operators of Bergman space of bounded symmetric domains

被引:2
作者
Ding, XH [1 ]
机构
[1] Guilin Inst Elect Technol, Dept Math & Comp Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
isometry; Toeplitz operators; symmetric domain; Bergman space;
D O I
10.1016/j.jmaa.2004.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we completely characterize the isometrics of Bergman space L-a(p) (Omega) (0 <= p < infinity, p not equal 2) of bounded symmetric domains. We also prove that a pair of Toeplitz operators T-f and T (g) on L-a(p) (Omega) (0 < p < infinity, p not equal 2) is isometric equivalence if and only if there is a T is an element of Aut(Omega), such that g = f o tau, where Aut(Omega) is the automorphism group of Omega. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 660
页数:11
相关论文
共 50 条
[31]   Kernels of Toeplitz operators on the Bergman space [J].
Young Joo Lee .
Czechoslovak Mathematical Journal, 2023, 73 :1119-1130
[32]   Normal Toeplitz Operators on the Bergman Space [J].
Kim, Sumin ;
Lee, Jongrak .
MATHEMATICS, 2020, 8 (09)
[33]   TOEPLITZ OPERATORS ON BERGMAN SPACES OF POLYGONAL DOMAINS [J].
Mannersalo, Paula .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (04) :1115-1136
[34]   Weighted composition operators between different Bergman spaces of bounded symmetric domains [J].
Lv, Xiaofen ;
Tang, Xiaomin .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (04) :521-529
[35]   Weighted composition operators between different Bergman spaces of bounded symmetric domains [J].
Xiaofen Lv ;
Xiaomin Tang .
Proceedings - Mathematical Sciences, 2009, 119 :521-529
[36]   Schatten class Bergman-type and Szego-type operators on bounded symmetric domains [J].
Ding, Lijia .
ADVANCES IN MATHEMATICS, 2022, 401
[37]   A SUFFICIENT CONDITION FOR HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE [J].
Kim, Sumin ;
Lee, Jongrak .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (04) :1019-1031
[38]   Invertible Toeplitz Operators Products on the Bergman Space of the Polydisk [J].
Zhiling SUNYufeng LU School of Mathematical SciencesDalian University of TechnologyLiaoning PRChinaCollege of MathematicsInner Mongolia University for NationalitiesInner Mongolia PRChina .
数学研究及应用, 2012, 32 (05) :543-553
[39]   INVARIANT SUBSPACES AND KERNELS OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE [J].
Das, Namita .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (01) :35-56
[40]   A question of Toeplitz operators on the harmonic Bergman space [J].
Ding, Xuanhao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :367-372