Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation

被引:29
作者
Gallagher, I [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
D O I
10.1006/jdeq.1998.3487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using methods introduced by S. Schochet in J. Differential Equations 114 (1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result. (C) 1998 Academic Press.
引用
收藏
页码:363 / 384
页数:22
相关论文
共 23 条
[1]  
ALINHAC S, 1991, OPERATEURS PSEUDO DI
[2]  
[Anonymous], 1984, APPL MATH SCI
[3]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[4]  
Babin A, 1996, EUR J MECH B-FLUID, V15, P291
[5]   VALIDITY OF THE QUASI-GEOSTROPHIC MODEL FOR LARGE-SCALE FLOW IN THE ATMOSPHERE AND OCEAN [J].
BOURGEOIS, AJ ;
BEALE, JT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1023-1068
[6]  
Chemin J.-Y, 1995, Asterisque, V230
[7]   An asymmetric penalization problem [J].
Chemin, JY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (09) :739-755
[8]  
Colin T., 1997, ADV DIFFERENTIAL EQU, V2, P715
[9]   Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity [J].
Embid, PF ;
Majda, AJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (3-4) :619-658
[10]  
Gallagher I, 1997, CR ACAD SCI I-MATH, V324, P183