Construction of a CRISPR/nCas9-assisted genome editing system for exopolysaccharide biosynthesis in Streptococcus thermophilus

被引:18
作者
Kong, Linghui [1 ,2 ]
Song, Xin [1 ]
Xia, Yongjun [1 ]
Ai, Lianzhong [1 ]
Xiong, Zhiqiang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai Engn Res Ctr Food Microbiol, Sch Hlth Sci & Engn, Shanghai 200093, Peoples R China
[2] Binzhou Med Univ, Sch Pharm, Sch Enol, Yantai 264003, Shandong, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Lacticacidbacteria; Streptococcusthermophilus; CRISPR/nCas9; Geneediting; Exopolysaccharidebiosynthesis; Epsgenecluster; STRUCTURAL-CHARACTERIZATION; GENE; CRISPR-CAS9; CAS9;
D O I
10.1016/j.foodres.2022.111550
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Streptococcus thermophilus is an economically prominent starter for common dairy products due to its potential health and nutritional benefits. However, lack of precise genetic manipulation approaches has greatly hampered the industrial application of S. thermophilus.. Herein, we developed an efficient genome editing toolbox (pKLH353) based on CRISPR/nCas9 (Cas9 nickase) in S. thermophilus to seamlessly edit single or multiple genes. A native constitutive promoter library was used to optimize the nCas9 and sgRNA expression with gene deletion efficiencies of 14-60%. The epsA, epsB and epsE were identified as key genes affecting exopolysaccharide (EPS) biosynthesis in S. thermophilus S-3 using the CRISPR/nCas9 toolbox. Moreover, compared to the wild-type, knockout of epsC, epsE or epsG led to a decrease of EPS titer with reducing in its molecular weight (> 2.5-fold) and intrinsic viscosity (> 19.8-fold). The ratio of monosaccharide composition of the mutants has also changed, suggesting that these eps genes are involved in the chain length synthesis and repeat unit assembly. Taken together, this CRISPR/nCas9 system can serve as a basic toolkit for precise genetic engineering of S. thermophilus and facilitate strain engineering to produce bio-based products.
引用
收藏
页数:7
相关论文
共 38 条
[1]   CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum [J].
Cho, Jae Sung ;
Choi, Kyeong Rok ;
Prabowo, Cindy Pricilia Surya ;
Shin, Jae Ho ;
Yang, Dongsoo ;
Jang, Jaedong ;
Lee, Sang Yup .
METABOLIC ENGINEERING, 2017, 42 :157-167
[2]   Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system [J].
Cui, Gu-Zhen ;
Zhang, Jie ;
Hong, Wei ;
Xu, Chenggang ;
Feng, Yingang ;
Cui, Qiu ;
Liu, Ya-Jun .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (01) :313-323
[3]   EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785 [J].
Dertli, Enes ;
Mayer, Melinda J. ;
Colquhoun, Ian J. ;
Narbad, Arjan .
MICROBIAL BIOTECHNOLOGY, 2016, 9 (04) :496-501
[4]   Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus [J].
Hidalgo-Cantabrana, Claudio ;
Goh, Yong Jun ;
Pan, Meichen ;
Sanozky-Dawes, Rosemary ;
Barrangou, Rodolphe .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (32) :15774-15783
[5]   Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J].
Hu, Johnny H. ;
Miller, Shannon M. ;
Geurts, Maarten H. ;
Tang, Weixin ;
Chen, Liwei ;
Sun, Ning ;
Zeina, Christina M. ;
Gao, Xue ;
Rees, Holly A. ;
Lin, Zhi ;
Liu, David R. .
NATURE, 2018, 556 (7699) :57-+
[6]   Development of a RecE/T-Assisted CRISPR-Cas9 Toolbox for Lactobacillus [J].
Huang, He ;
Song, Xin ;
Yang, Sheng .
BIOTECHNOLOGY JOURNAL, 2019, 14 (07)
[7]   One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces [J].
Huang, He ;
Zheng, Guosong ;
Jiang, Weihong ;
Hu, Haifeng ;
Lu, Yinhua .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2015, 47 (04) :231-243
[8]   Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168 [J].
Jin, Peng ;
Kang, Zhen ;
Yuan, Panhong ;
Du, Guocheng ;
Chen, Jian .
METABOLIC ENGINEERING, 2016, 35 :21-30
[9]   Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter [J].
Junjua, M. ;
Galia, W. ;
Gaci, N. ;
Uriot, O. ;
Genay, M. ;
Bachmann, H. ;
Kleerebezem, M. ;
Dary, A. ;
Roussel, Y. .
JOURNAL OF APPLIED MICROBIOLOGY, 2014, 116 (03) :620-631
[10]   Characterization of a Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-Tuning Gene Expression [J].
Kong, Ling-Hui ;
Xiong, Zhi-Qiang ;
Song, Xin ;
Xia, Yong-Jun ;
Zhang, Na ;
Ai, Lian-Zhong .
ACS SYNTHETIC BIOLOGY, 2019, 8 (06) :1469-1472