Numerical simulation on film cooling with compound angle of blade leading edge model for gas turbine

被引:41
|
作者
Gao, Wen-jing [1 ]
Yue, Zhu-feng [1 ]
Li, Lei [1 ]
Zhao, Zhe-nan [1 ]
Tong, Fu-juan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Turbine blade; Leading edge; Film cooling; Numerical simulations; Compound angle; HEAT-TRANSFER COEFFICIENT; LAID-BACK HOLES; PERFORMANCE; FLOW; INJECTION; ENDWALL; VANE; LES;
D O I
10.1016/j.ijheatmasstransfer.2017.07.105
中图分类号
O414.1 [热力学];
学科分类号
摘要
Film cooling performances of the cylindrical film cooling holes with different compound angles on the turbine blade leading edge model are investigated in this paper. Several numerical simulation results are compared with available experimental data, under different blowing ratios. Three rows of holes are arranged in a semi-cylinder model which is used to model the blade leading edge. These three rows of holes have a compound angle of 90 in the flow direction, 30 along the spanwise direction. Besides, the two rows on either side of the stagnation row have an additional angle in the transverse direction. Five different film cooling hole compound angles in the transverse direction and four different blowing ratios are studied in detail. The results show that as the blowing ratio increases, the trajectory of the film jets in the leading edge region deviates gradually from the mainstream direction to the spanwise direction, for all cases studied. And film cooling effectiveness increases with the increasing blowing ratio while a slight decrease appears as the blowing ratio approaches 2.0. In this study, the optimal value of M is around 1.4. For the Baseline Case, the overall averaged cooling effectiveness increases by more than 0.1, compared with M = 0.7. The holes with negative additional compound angle have better performance of cooling. On the one hand, the improvement of film cooling effectiveness increases with the increasing negative compound angle, before it reaches -30 degrees. On the other hand, with the increasing blowing ratio, the improvement of the cooling performance due to negative additional compound angle is more significant. For gamma = 30 degrees, the increase of overall averaged cooling effectiveness varies from 1.75% to almost 20%, with the increase of M. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:839 / 855
页数:17
相关论文
共 50 条
  • [1] Numerical simulation on impingement and film composite cooling of blade leading edge model for gas turbine
    Liu, Zhao
    Ye, Lv
    Wang, Changyee
    Feng, Zhenping
    APPLIED THERMAL ENGINEERING, 2014, 73 (02) : 1432 - 1443
  • [2] Numerical simulation of film cooling in leading edge of turbine blade
    College of Power and Energy Engineering, Harbin University of Engineering, Harbin 150001, China
    不详
    不详
    Hangkong Dongli Xuebao, 2009, 3 (519-525): : 519 - 525
  • [3] Film cooling with compound angle holes in leading edge of twisted turbine blade
    Ren M.
    Liu C.
    Du K.
    Zhang L.
    Zhu H.
    Zhang B.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (18):
  • [4] NUMERICAL SIMULATION OF IMPINGING COOLING ON THE LEADING EDGE OF A TURBINE BLADE
    Cheng, Keyong
    Huai, Xiulan
    Cai, Jun
    Guo, Zhixiong
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B, 2012, : 1077 - 1085
  • [5] NUMERICAL ANALYSIS ON THE LEADING EDGE FILM COOLING OF BIFURCATION HOLES FOR GAS TURBINE BLADE
    Tang, Zhonghao
    Xie, Gongnan
    Li, Honglin
    Gao, Wenjing
    Tan, Chunlong
    Li, Lei
    PROCEEDINGS OF THE ASME 2021 HEAT TRANSFER SUMMER CONFERENCE (HT2021), 2021,
  • [6] Experimental and Numerical Studies on Leading Edge Film Cooling of a HP Turbine Blade Model
    Funazaki, Ken-ichi
    Yamachi, Naota
    Bin Salleh, Hamidon
    Taicahashi, Toshihiko
    Sakai, Eiji
    Watanabe, Kazunori
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON POWER ENGINEERING 2009 (ICOPE-09), VOL 2, 2009, : 55 - 60
  • [7] Effect of the Injection Angle on the Leading Edge Film Cooling of a Rotating Turbine Blade
    Han, Feng
    Li, Hai-Wang
    1600, Science Press (41): : 320 - 328
  • [8] Application of local indentations for film cooling of gas turbine blade leading edge
    Petelchyts, V. Yu.
    Khalatov, A. A.
    Pysmennyi, D. N.
    Dashevskyy, Yu. Ya.
    THERMOPHYSICS AND AEROMECHANICS, 2016, 23 (05) : 713 - 720
  • [9] Application of local indentations for film cooling of gas turbine blade leading edge
    V. Yu. Petelchyts
    A. A. Khalatov
    D. N. Pysmennyi
    Yu. Ya. Dashevskyy
    Thermophysics and Aeromechanics, 2016, 23 : 713 - 720
  • [10] Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behavior for gas turbine blade leading edge
    Fan, Xiaojun
    Du, Changhe
    Li, Liang
    Li, Sen
    APPLIED THERMAL ENGINEERING, 2017, 112 : 472 - 483