Inverted Si:PbS Colloidal Quantum Dot Heterojunction-Based Infrared Photodetector

被引:79
作者
Xu, Kaimin [1 ]
Xiao, Xiongbin [1 ,2 ,3 ]
Zhou, Wenjia [1 ]
Jiang, Xianyuan [1 ]
Wei, Qi [1 ]
Chen, Hao [1 ]
Deng, Zhuo [1 ]
Huang, Jian [1 ]
Chen, Baile [1 ]
Ning, Zhijun [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
PbS CQDs; silicon; ROICs; heterojunction; photodetector; RECOMBINATION; PHOTODIODES; DETECTORS;
D O I
10.1021/acsami.0c01744
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon and PbS colloidal quantum dot heterojunction photodetectors combine the advantages of the Si device and PbS CQDs, presenting a promising strategy for infrared light detecting. However, the construction of a high-quality CQDs:Si heterojunction remains a challenge. In this work, we introduce an inverted structure photodetector based on n-type Si and p-type PbS CQDs. Compared with the existing normal structure photodetector with p-type Si and n-type PbS CQDs, it has a lower energy band offset that provides more efficient charge extraction for the device. With the help of Si wafer surface passivation and the Si doping density optimization, the device delivers a high detectivity of 1.47 x 10(11) Jones at 1540 nm without working bias, achieving the best performance in Si/PbS photodetectors in this region now. This work provides a new strategy to fabricate low-cost high-performance PbS CQDs photodetectors compatible with silicon arrays.
引用
收藏
页码:15414 / 15421
页数:8
相关论文
共 35 条
[1]   Photovoltage field-effect transistors [J].
Adinolfi, Valerio ;
Sargent, Edward H. .
NATURE, 2017, 542 (7641) :324-+
[2]   Interfacial Modification in Organic and Perovskite Solar Cells [J].
Bi, Shiqing ;
Leng, Xuanye ;
Li, Yanxun ;
Zheng, Zhong ;
Zhang, Xuning ;
Zhang, Yuan ;
Zhou, Huiqiong .
ADVANCED MATERIALS, 2019, 31 (45)
[3]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[4]   SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II Quantum Wells [J].
Chen, Baile ;
Jiang, Weiyang ;
Yuan, Jinrong ;
Holmes, Archie L., Jr. ;
Onat, Bora. M. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (09) :1244-1250
[5]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/NMAT3984, 10.1038/nmat3984]
[6]   Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells [J].
Crisp, Ryan W. ;
Kroupa, Daniel M. ;
Marshall, Ashley R. ;
Miller, Elisa M. ;
Zhang, Jianbing ;
Beard, Matthew C. ;
Luther, Joseph M. .
SCIENTIFIC REPORTS, 2015, 5
[7]   Surface recombination velocity of highly doped n-type silicon [J].
Cuevas, A ;
Basore, PA ;
GiroultMatlakowski, G ;
Dubois, C .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (06) :3370-3375
[8]   Modeling metastabilities in chalcopyrite-based thin film solar cells [J].
Decock, Koen ;
Zabierowski, Pawel ;
Burgelman, Marc .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
[9]   THERMAL-STABILITY OF THE METHYL-GROUP ADSORBED ON SI(100) - CH3I SURFACE-CHEMISTRY [J].
GUTLEBEN, H ;
LUCAS, SR ;
CHENG, CC ;
CHOYKE, WJ ;
YATES, JT .
SURFACE SCIENCE, 1991, 257 (1-3) :146-156
[10]   Solution-Based PbS Photodiodes, Integrable on ROIC, for SWIR Detector Applications [J].
Heves, Emre ;
Ozturk, Cem ;
Ozguz, Volkan ;
Gurbuz, Yasar .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (05) :662-664