Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model

被引:201
|
作者
Gao, Yizhao [1 ]
Liu, Kailong [2 ]
Zhu, Chong [1 ]
Zhang, Xi [1 ]
Zhang, Dong [3 ]
机构
[1] Shanghai Jiao Tong Univ, State Engn Lab Automobile Elect, Shanghai 200240, Peoples R China
[2] Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, England
[3] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
State of charge; Batteries; Estimation; Resistance; Ions; Electrolytes; Mathematical model; Electrochemistry; estimator design; lithium-ion batteries; pseudo-two-dimensional (P2D) model; side reactions; state-of-charge (SOC); state-of-health (SOH); OPEN-CIRCUIT VOLTAGE; CELL; MANAGEMENT; PACKS;
D O I
10.1109/TIE.2021.3066946
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time electrochemical state information of lithium-ion batteries attributes to a high-fidelity estimation of state-of-charge (SOC) and state-of-health (SOH) in advanced battery management systems. However, the consumption of recyclable lithium ions, loss of the active materials, and the interior resistance increase resulted from the irreversible side reactions cause severe battery performance decay. To maintain accurate battery state estimation over time, a scheme using the reduced-order electrochemical model and the dual nonlinear filters is presented in this article for the reliable co-estimations of cell SOC and SOH. Specifically, the full-order pseudo-two-dimensional model is first simplified with Pade approximation while ensuring precision and observability. Next, the feasibility and performance of SOC estimator are revealed by accessing unmeasurable physical variables, such as the surface and bulk solid-phase concentration. To well reflect battery degradation, three key aging factors including the loss of lithium ions, loss of active materials, and resistance increment, are simultaneously identified, leading to an appreciable precision improvement of SOC estimation online particular for aged cells. Finally, extensive verification experiments are carried out over the cell's lifespan. The results demonstrate the performance of the proposed SOC/SOH co-estimation scheme.
引用
收藏
页码:2684 / 2696
页数:13
相关论文
共 50 条
  • [21] A Co-Estimation Framework for State of Charge and Parameters of Lithium-Ion Battery With Robustness to Aging and Usage Conditions
    Natella, Domenico
    Onori, Simona
    Vasca, Francesco
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 5760 - 5770
  • [22] State-of-Charge and State-of-Health Lithium-Ion Batteries' Diagnosis According to Surface Temperature Variation
    El Mejdoubi, Asmae
    Oukaour, Amrane
    Chaoui, Hicham
    Gualous, Hamid
    Sabor, Jalal
    Slamani, Youssef
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) : 2391 - 2402
  • [23] A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
    Weng, Caihao
    Sun, Jing
    Peng, Huei
    JOURNAL OF POWER SOURCES, 2014, 258 : 228 - 237
  • [24] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [25] Electrochemical Impedance Spectroscopy Based State-of-Health Estimation for Lithium-Ion Battery Considering Temperature and State-of-Charge Effect
    Zhang, Qunming
    Huang, Cheng-Geng
    Li, He
    Feng, Guodong
    Peng, Weiwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4633 - 4645
  • [26] Online state-of-charge and capacity co-estimation for lithium-ion batteries under aging and varying temperatures
    Son, Donghee
    Song, Youngbin
    Park, Shina
    Oh, Junseok
    Kim, Sang Woo
    ENERGY, 2025, 316
  • [27] State-of-Charge estimation from a thermal-electrochemical model of lithium-ion batteries
    Tang, Shu-Xia
    Camacho-Solorio, Leobardo
    Wang, Yebin
    Krstic, Miroslav
    AUTOMATICA, 2017, 83 : 206 - 219
  • [28] Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model
    Lai, Xin
    He, Long
    Wang, Shuyu
    Zhou, Long
    Zhang, Yinfan
    Sun, Tao
    Zheng, Yuejiu
    JOURNAL OF CLEANER PRODUCTION, 2020, 255
  • [29] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945
  • [30] A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method
    Li, Kuo
    Gao, Xiao
    Liu, Caixia
    Chang, Chun
    Li, Xiaoyu
    ENERGY, 2023, 269