A variational approach to the sum splitting scheme

被引:3
作者
Eisenmann, Monika [1 ]
Hansen, Eskil [1 ]
机构
[1] Lund Univ, Ctr Math Sci, POB 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
nonlinear evolution problem; monotone operator; operator splitting; convergence; EVOLUTION; CONVERGENCE; DIFFUSION;
D O I
10.1093/imanum/draa100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear parabolic equations are frequently encountered in applications and efficient approximating techniques for their solution are of great importance. In order to provide an effective scheme for the temporal approximation of such equations, we present a sum splitting scheme that comes with a straightforward parallelization strategy. The convergence analysis is carried out in a variational framework that allows for a general setting and, in particular, nontrivial temporal coefficients. The aim of this work is to illustrate the significant advantages of a variational framework for operator splittings and to use this to extend semigroup-based theory for this type of scheme.
引用
收藏
页码:923 / 950
页数:28
相关论文
共 34 条
[1]  
Adams A. R., 2003, PURE APPL MATH, V140
[2]  
[Anonymous], 2004, Gewohnliche und Operator-Differentialgleichungen
[3]  
[Anonymous], 2009, GRADUATE STUDIES MAT
[4]   Fast/slow diffusion and growing sandpiles [J].
Aronsson, G ;
Evans, LC ;
Wu, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :304-335
[5]   Modified Douglas splitting methods for reaction-diffusion equations [J].
Arraras, A. ;
in 't Hout, K. J. ;
Hundsdorfer, W. ;
Portero, L. .
BIT NUMERICAL MATHEMATICS, 2017, 57 (02) :261-285
[6]  
BARBU V., 1976, NONLINEAR SEMIGROUPS
[7]  
CORON JM, 1982, J MATH PURE APPL, V61, P91
[8]  
Diestel J., 1977, VECTOR MEASURES
[9]  
Drabek P., 1997, DEGRUYTER SERIES NON, V5
[10]  
Eisenmann M., 2019, Methods for the temporal approximation of nonlinear, nonautonomous evolution equations