Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach

被引:39
作者
Figueras, J. -Ll. [1 ]
Haro, A. [2 ]
Luque, A. [3 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, Gran Via 585, E-08007 Barcelona, Spain
[3] CSIC, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
A posteriori KAM theory; Computer-assisted proofs; Russmann estimates; Fast Fourier transform; CRITICAL INVARIANT CIRCLES; KOLMOGOROV THEOREM; CONVERSE KAM; TWIST MAPS; TORI; STABILITY; COMPUTATION; PROOF; CRITERION; BREAKDOWN;
D O I
10.1007/s10208-016-9339-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present and illustrate a general methodology to apply KAM theory in particular problems, based on an a posteriori approach. We focus on the existence of real analytic quasi-periodic Lagrangian invariant tori for symplectic maps. The purpose is to verify the hypotheses of a KAM theorem in an a posteriori format: Given a parameterization of an approximately invariant torus, we have to check non-resonance (Diophantine) conditions, non-degeneracy conditions and certain inequalities to hold. To check such inequalities, we require to control the analytic norm of some functions that depend on the map, the ambient structure and the parameterization. To this end, we propose an efficient computer-assisted methodology, using fast Fourier transform, having the same asymptotic cost of using the parameterization method for obtaining numerical approximations of invariant tori. We illustrate our methodology by proving the existence of invariant curves for the standard map (up to ), meandering curves for the non-twist standard map and 2-dimensional tori for the Froeschl, map.
引用
收藏
页码:1123 / 1193
页数:71
相关论文
共 77 条
  • [1] [Anonymous], THESIS
  • [2] [Anonymous], PREPRINT
  • [3] [Anonymous], NATO ASI C
  • [4] [Anonymous], 1969, An introduction to the approximation of functions
  • [5] [Anonymous], PROGR PHYS
  • [6] [Anonymous], MEM AM MATH SOC
  • [7] Arnol'd V.I., 1963, Usp. Mat. Nauk. SSSR, V18, P13
  • [8] Arnold V. I., 1963, Russian Mathematical Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
  • [9] A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    STRELCYN, JM
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02): : 201 - 223
  • [10] BOST JB, 1986, ASTERISQUE, P113