Wavefront Velocity Oscillations of Carbon-Nanotube-Guided Thermopower Waves: Nanoscale Alternating Current Sources

被引:34
作者
Abrahamson, Joel T. [1 ]
Choi, Wonjoon [1 ,2 ]
Schonenbach, Nicole S. [1 ]
Park, Jungsik [1 ]
Han, Jae-Hee [1 ]
Walsh, Michael P. [1 ]
Kalantar-zadeh, Kourosh [1 ,3 ]
Strano, Michael S. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic, Australia
基金
美国国家科学基金会;
关键词
carbon nanotubes; cyclotrimethylene-trinitramine; thermopower; power source; oscillation; reaction diffusion; energy storage; POWER; PROPAGATION; COMBUSTION;
D O I
10.1021/nn101618y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The nonlinear coupling between exothermic chemical reactions and a nanowire or nanotube with large axial heat conduction results in a self propagating thermal wave guided along the nanoconduct. The resulting reaction wave induces a concomitant thermopower wave of high power density (>7 kW/kg), resulting In an electrical current along the same direction. We develop the theory of such waves and analyze them experimentally, showing that for certain values of the chemical reaction kinetics and thermal parameters, oscillating wavefront velocities are possible. We demonstrate such oscillations experimentally using a cyclotrimethylene-trinitramine/multiwalled carbon nanotube system, which produces frequencies in the range of 400 to 5000 Hz. The propagation velocity oscillations and the frequency dispersion are well-described by Fourier's law with an Arrhenius source term accounting for reaction and a linear heat exchange with the nanotube scaffold.. The frequencies are in agreement with oscillations in the voltage generated by the reaction. These thermopower oscillations may enable new types of nanoscale power and signal processing sources.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 37 条
[1]   Modelling the increase in anisotropic reaction rates in metal nanoparticle oxidation using carbon nanotubes as thermal conduits [J].
Abrahamson, Joel T. ;
Nair, Nitish ;
Strano, Michael S. .
NANOTECHNOLOGY, 2008, 19 (19)
[2]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[3]   Review of microscale magnetic power generation [J].
Arnold, David P. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (11) :3940-3951
[4]   FROM TRAVELING WAVES TO CHAOS IN COMBUSTION [J].
BAYLISS, A ;
MATKOWSKY, BJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (01) :147-174
[5]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[6]  
Choi W, 2010, NAT MATER, V9, P423, DOI [10.1038/nmat2714, 10.1038/NMAT2714]
[7]   SoC issues for RF smart dust [J].
Cook, Ben W. ;
Lanzisera, Steven ;
Pister, Kristofer S. J. .
PROCEEDINGS OF THE IEEE, 2006, 94 (06) :1177-1196
[8]   Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [J].
Cook-Chennault, K. A. ;
Thambi, N. ;
Sastry, A. M. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (04)
[9]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[10]   Energy harvesting by implantable abiotically catalyzed glucose fuel cells [J].
Kerzenmacher, S. ;
Ducree, J. ;
Zengerle, R. ;
von Stetten, F. .
JOURNAL OF POWER SOURCES, 2008, 182 (01) :1-17