Endangered Right Whales Enhance Primary Productivity in the Bay of Fundy

被引:22
作者
Roman, Joe [1 ]
Nevins, John [2 ]
Altabet, Mark [3 ]
Koopman, Heather [4 ]
McCarthy, James [2 ]
机构
[1] Univ Vermont, Gund Inst Ecol Econ, Burlington, VT 05405 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] Univ Massachusetts Dartmouth, Dept Estuarine & Ocean Sci, Dartmouth, MA USA
[4] Univ N Carolina, Dept Biol & Marine Biol, Wilmington, NC 28401 USA
关键词
ATLANTIC RIGHT WHALES; EUBALAENA-GLACIALIS; GULF; PHYTOPLANKTON; ZOOPLANKTON; ADAPTATION; NITRATE; BLOOMS; GROWTH; FRESH;
D O I
10.1371/journal.pone.0156553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4+ and PO43- release rates from the feces of North Atlantic right whales (Eubalaena glacialis), a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface-active groups (SAGs), which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4+ within 24 hours of defecation. Phosphorous was also abundant in fecal samples: initial release rates of PO43- were higher than for NH4+, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO43- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4+ released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals), they once numbered about 14,000 and likely played a substantial role in recycling nutrients in areas where they gathered to feed and mate. Even though the NH4+ released from fresh whale fecal material is a small fraction of total whale fecal nitrogen, and recognizing the fact that the additional nitrogen released in whale urine would be difficult to measure in a field study, the results of this study support the idea that the distinctive isotopic signature of the released NH4+ could be used to provide a conservative estimate of the contribution of the whale pump to primary productivity in coastal regions where whales congregate.
引用
收藏
页数:14
相关论文
共 42 条
[1]  
Altabet MA, 2006, HANDB ENVIRON CHEM, V2, P251, DOI 10.1117/698_2_008
[2]  
Barrie S., 1984, SPECTROSC-INT J, V3, P439
[3]   Associations between North Atlantic right whales and their prey, Calanus finmarchicus, over diel and tidal time scales [J].
Baumgartner, MF ;
Cole, TVN ;
Campbell, RG ;
Teegarden, GJ ;
Durbin, EG .
MARINE ECOLOGY PROGRESS SERIES, 2003, 264 :155-166
[4]  
Brown M.W., 1995, Marine Protected Areas and Sustainable Fisheries, P90
[5]   Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems [J].
Calbet, A ;
Landry, MR .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (01) :51-57
[6]   Global nutrient transport in a world of giants [J].
Doughty, Christopher E. ;
Roman, Joe ;
Faurby, Soren ;
Wolf, Adam ;
Haque, Alifa ;
Bakker, Elisabeth S. ;
Malhi, Yadvinder ;
Dunning, John B., Jr. ;
Svenning, Jens-Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (04) :868-873
[7]   PELAGIC-BENTHIC ENERGY COUPLING AT THE MOUTH OF THE BAY OF FUNDY [J].
EMERSON, CW ;
ROFF, JC ;
WILDISH, DJ .
OPHELIA, 1986, 26 :165-180
[8]  
Hamilton PK, 2016, OCEAN FLOOR IN PRESS
[9]  
Koopman HN, 2014, OCEANOGRAPHY, V27, P14
[10]  
Kraus Scott D., 2001, Journal of Cetacean Research and Management Special Issue, V2, P237