A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model

被引:84
作者
Bellotti, R. [1 ,2 ]
De Carlo, F. [1 ]
Gargano, G. [1 ]
Tangaro, S. [1 ]
Cascio, D. [3 ]
Catanzariti, E. [4 ]
Cerello, P. [6 ]
Cheran, S. C. [6 ,7 ]
Delogu, P. [5 ]
De Mitri, I. [8 ]
Fulcheri, C. [9 ]
Grosso, D. [7 ,12 ]
Retico, A. [13 ]
Squarcia, S. [7 ,12 ]
Tommasi, E. [1 ,8 ]
Golosio, Bruno [10 ,11 ]
机构
[1] Univ Bari, Dipartimento Fis, Sez INFN, Bari, Italy
[2] TIRES, Ctr Innovat Technol Signal Detect & Proc, Bari, Italy
[3] Univ Palermo, Dipartimento Fis & Tecnol Relat, I-90133 Palermo, Italy
[4] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy
[5] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[6] Sezione Ist Nazl Fis Nucl, Turin, Italy
[7] Univ Genoa, Dipartimento Fis, Genoa, Italy
[8] Sezione Ist Nazl Fis Nucl, Lecce, Italy
[9] Univ Turin, Dipartimento Fis Sperimentale, I-10124 Turin, Italy
[10] Sezione Ist Nazl Fis Nucl, Cagliari, Italy
[11] Univ Sassari, Struttura Dipartimentale Matemat & Fis, I-07100 Sassari, Italy
[12] Sezione Ist Nazl Fis Nucl, Genoa, Italy
[13] Sezione Ist Nazl Fis Nucl, Pisa, Italy
关键词
computer-aided diagnosis (CAD); image processing; computed tomography; image segmentation;
D O I
10.1118/1.2804720
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency. (c) 2007 American Association of Physicists in Medicine.
引用
收藏
页码:4901 / 4910
页数:10
相关论文
共 29 条
[1]  
*AN CANC SOC, 1999, CANC FACTS FIG
[2]  
*AN CANC SOC, 2005, CANC FACTS FIG
[3]  
[Anonymous], P 2007 IEEE INT C CO
[4]   Distributed medical images analysis on a Grid infrastructure [J].
Bellotti, R. ;
Cerello, P. ;
Tangaro, S. ;
Bevilacqua, V. ;
Castellano, M. ;
Mastronardi, G. ;
De Carlo, F. ;
Bagnasco, S. ;
Bottigli, U. ;
Cataldo, R. ;
Catanzariti, E. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
De Nunzio, G. ;
Fantacci, M. E. ;
Fauci, F. ;
Gargano, G. ;
Golosio, B. ;
Indovina, P. L. ;
Lauria, A. ;
Lopez-Torres, E. ;
Magro, R. ;
Masala, G. L. ;
Massafra, R. ;
Oliva, P. ;
Martinez, A. Preite ;
Quarta, M. ;
Raso, G. ;
Retico, A. ;
Sitta, M. ;
Stumbo, S. ;
Tata, A. ;
Squarcia, S. ;
Schenone, A. ;
Molinari, E. ;
Canesi, B. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2007, 23 (03) :475-484
[5]   A completely automated CAD system for mass detection in a large mammographic database [J].
Bellotti, R. ;
De Carlo, F. ;
Tangaro, S. ;
Gargano, G. ;
Maggipinto, G. ;
Castellano, M. ;
Massafra, R. ;
Cascio, D. ;
Fauci, F. ;
Magro, R. ;
Raso, G. ;
Lauria, A. ;
Forni, G. ;
Bagnasco, S. ;
Cerello, P. ;
Zanon, E. ;
Cheran, S. C. ;
Torres, E. Lopez ;
Bottigli, U. ;
Masala, G. L. ;
Oliva, P. ;
Retico, A. ;
Fantacci, M. E. ;
Cataldo, R. ;
De Mitri, I. ;
De Nunzio, G. .
MEDICAL PHYSICS, 2006, 33 (08) :3066-3075
[6]   Computer-aided lung nodule detection in CT: Results of large-scale observer test [J].
Brown, MS ;
Goldin, JG ;
Rogers, S ;
Kim, HJ ;
Suh, RD ;
McNitt-Gray, MF ;
Shah, SK ;
Truong, D ;
Brown, K ;
Sayre, JW ;
Gjertson, DW ;
Batra, P ;
Aberle, DR .
ACADEMIC RADIOLOGY, 2005, 12 (06) :681-686
[7]   Mammogram segmentation by contour searching and mass lesions classification with neural network [J].
Cascio, D. ;
Fauci, F. ;
Magro, R. ;
Raso, G. ;
Bellotti, R. ;
De Carlo, F. ;
Tangaro, S. ;
De Nunzio, G. ;
Quarta, M. ;
Forni, G. ;
Lauria, A. ;
Fantacci, M. E. ;
Retico, A. ;
Masala, G. L. ;
Oliva, P. ;
Bagnasco, S. ;
Cheran, S. C. ;
Torres, E. Lopez .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (05) :2827-2833
[8]  
CHERAN CS, 2004, P IEEE MED IM C ROM
[9]  
DONG JK, 1999, PATTERN RECOGNIT LET, V20, P507
[10]   A massive lesion detection algorithm in mammography [J].
Fauci, F ;
Raso, G ;
Magro, R ;
Forni, G ;
Lauria, A ;
Bagnasco, S ;
Cerello, P ;
Cheran, SC ;
Torres, EL ;
Bellotti, R ;
De Carlo, F ;
Gargano, G ;
Tangaro, S ;
De Mitri, I ;
De Nunzio, G ;
Cataldo, R .
PHYSICA MEDICA, 2005, 21 (01) :23-30