Optimum structure to carry a uniform load between pinned supports: exact analytical solution

被引:18
作者
Tyas, A. [1 ]
Pichugin, A. V. [2 ]
Gilbert, M. [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Brunel Univ, SISCM, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 467卷 / 2128期
关键词
topology optimization; Michell structure; Prager structure; Hencky net; parabolic arch; POPULAR BENCHMARK PROBLEMS; PLANE PRAGER-STRUCTURES; TOPOLOGY OPTIMIZATION; TRAPEZOIDAL DOMAINS; MICHELL LAYOUTS; LINE SUPPORTS; COMBINATIONS; IV;
D O I
10.1098/rspa.2010.0376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent numerical evidence indicates that a parabolic funicular is not necessarily the optimal structural form to carry a uniform load between pinned supports. When the constituent material is capable of resisting equal limiting tensile and compressive stresses, a more efficient structure can be identified, comprising a central parabolic section and networks of truss bars emerging from the supports. In the current article, a precise geometry for this latter structure is identified, avoiding the inconsistencies that render the parabolic form non-optimal. Explicit analytical expressions for the geometry, stress and virtual-displacement fields within and above the structure are presented. Furthermore, a suitable displacement field below the structure is computed numerically and shown to satisfy the Michell-Hemp optimality criteria, hence formally establishing the global optimality of this new structural form.
引用
收藏
页码:1101 / 1120
页数:20
相关论文
共 26 条
[1]  
CHAN ASL, 1962, 3303 HER MAJ STAT OF
[2]  
Chan HSY., 1963, OPTIMUM MICHELL FRAM
[3]   Optimum structure to carry a uniform load between pinned supports [J].
Darwich, Wael ;
Gilbert, Matthew ;
Tyas, Andy .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (01) :33-42
[4]   Layout optimization of large-scale pin-jointed frames [J].
Gilbert, M ;
Tyas, A .
ENGINEERING COMPUTATIONS, 2003, 20 (7-8) :1044-1064
[5]   Michell cantilevers constructed withing trapezoidal domains - Part II: Virtual displacement fields [J].
Graczykowski, C. ;
Lewinski, T. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 32 (06) :463-471
[6]   Michell cantilevers constructed within trapezoidal domains - Part IV: Complete exact solutions of selected optimal designs and their approximations by trusses of finite number of joints [J].
Graczykowski, C. ;
Lewinski, T. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2007, 33 (02) :113-129
[7]   Michell cantilevers constructed within trapezoidal domains - Part I: geometry of Hencky nets [J].
Graczykowski, C. ;
Lewinski, T. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 32 (05) :347-368
[8]  
Graczykowski C, 2007, STRUCT MULTIDISCIP O, V33, P1, DOI DOI 10.1007/S00158-005-0601-6
[9]  
Hemp W.S., 1973, Optimum Structures
[10]  
Hemp WS., 1974, ENG OPTIM, V1, P61, DOI [10.1080/03052157408960577, DOI 10.1080/03052157408960577]