Remarkably Improved Hydrogen Storage Performance of MgH2 Catalyzed by Multivalence NbHx Nanoparticles

被引:90
作者
Zhang, Liuting [1 ]
Xiao, Xuezhang [1 ]
Xu, Chenchen [1 ]
Zheng, Jiaguang [1 ]
Fan, Xiulin [1 ]
Shao, Jie [1 ]
Li, Shouquan [1 ]
Ge, Hongwei [1 ]
Wang, Qidong [1 ]
Chen, Lixin [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
SORPTION KINETICS; MAGNESIUM; NB2O5; DESORPTION; DEHYDROGENATION; ABSORPTION; BEHAVIOR; METALS; STATE; NI;
D O I
10.1021/acs.jpcc.5b01532
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium hydride is widely investigated because of its high hydrogen storage capacity. However, the unfavorable thermodynamic and kinetic barriers hinder its practical application. To ease these problems, three kinds of NbHx nanoparticles were prepared by wet-chemical methods and then introduced into MgH2 for catalytically enhancing its hydrogen storage properties in this work. The results show that all the NbHx nanoparticles are effective in promoting the de-/rehydrogenation kinetics of MgH2, and the three NbHx doped MgH2 composites can desorb 7.0 wt % H-2 within 9 min at 300 degrees C while ball milled MgH2 only releases 0.2 wt % H-2 in 9 min and 4.1 wt % H-2 even in 200 min. Interestingly, the significant hydrogen absorption by NbHx doped MgH2 under lower temperature ranging from 50 to 100 degrees C was observed; thus, MgH2/c-NbHx sample can uptake about 4.0 wt % H-2 at 100 degrees C. It is found that the more disordered the structure and smaller the size of the NbHx particles, the better is the catalytic effect on hydrogen storage performances of MgH2. Analyses of XRD, XPS, and TEM results indicate that the NbHx remains stable in the ball milling and following de-/rehydrogenation process and act as active catalytic species in improving hydrogen storage performance of MgH2. Moreover, a mechanism is proposed to understand how the nanosized NbHx acted as charge transfer between Mg2+ and H-, which contributes to the significantly improved hydrogen storage performances of MgH2. It is believed that the use of Nb-based nanoparticles as catalysts would greatly promote the development of the practical applications of MgH2 for hydrogen storage.
引用
收藏
页码:8554 / 8562
页数:9
相关论文
共 41 条
[1]   Effect of Nb2O5 on MgH2 properties during mechanical milling [J].
Aguey-Zinsou, K.-F. ;
Fernandez, J. R. Ares ;
Klassen, T. ;
Bormann, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2400-2407
[2]   Synthesis of colloidal magnesium:: A near room temperature store for hydrogen [J].
Aguey-Zinsou, Kondo-Francois ;
Ares-Fernandez, Jose-Ramon .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :376-378
[3]   Hydrogen in magnesium: new perspectives toward functional stores [J].
Aguey-Zinsou, Kondo-Francois ;
Ares-Fernandez, Jose-Ramon .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (05) :526-543
[4]  
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[5]   Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
SCRIPTA MATERIALIA, 2003, 49 (03) :213-217
[6]   Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction [J].
Barkhordarian, Gagik ;
Klassen, Thomas ;
Bormann, Rudiger .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (22) :11020-11024
[7]   Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2 [J].
Bazzanella, N ;
Checchetto, R ;
Miotello, A .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5212-5214
[8]   Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts [J].
Cui, Jie ;
Wang, Hui ;
Liu, Jiangwen ;
Ouyang, Liuzhang ;
Zhang, Qingan ;
Sun, Dalin ;
Yao, Xiangdong ;
Zhu, Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5603-5611
[9]   Structural characterization and dehydrogenation behavior of Mg-5 at.%Nb nano-composite processed by reactive milling [J].
de Castro, JFR ;
Santos, SF ;
Costa, ALM ;
Yavari, AR ;
Botta, WJ ;
Ishikawa, TT .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 376 (1-2) :251-256
[10]   Hydrogen storage: the remaining scientific and technological challenges [J].
Felderhoff, Michael ;
Weidenthaler, Claudia ;
von Helmolt, Rittmar ;
Eberle, Ulrich .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) :2643-2653