Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives

被引:529
作者
Yang, Wanneng [1 ,2 ]
Feng, Hui [1 ,2 ]
Zhang, Xuehai [3 ]
Zhang, Jian [1 ,2 ]
Doonan, John H. [4 ]
Batchelor, William David [5 ]
Xiong, Lizhong [1 ,2 ]
Yan, Jianbing [1 ,2 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Plant Gene Res, Wuhan 430070, Peoples R China
[3] Henan Agr Univ, Coll Agron, Natl Key Lab Wheat & Maize Crops Sci, Zhengzhou 450002, Peoples R China
[4] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Natl Plant Phen Ctr, Aberystwyth, Dyfed, Wales
[5] Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA
基金
美国食品与农业研究所; 英国生物技术与生命科学研究理事会; 中国国家自然科学基金;
关键词
crop phenomics; high-throughput; field phenotyping; root system architecture; yield and quality; genetic studies; GENOME-WIDE ASSOCIATION; ROOT-SYSTEM ARCHITECTURE; RAY COMPUTED-TOMOGRAPHY; ARABIDOPSIS-THALIANA; GENETIC ARCHITECTURE; GROWTH DYNAMICS; WATER-DEFICIT; PERFORMANCE EVALUATION; VEGETATION INDEXES; ANALYSIS PLATFORM;
D O I
10.1016/j.molp.2020.01.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since whole-genome sequencing of many crops has been achieved, crop functional genomics studies have stepped into the big-data and high-throughput era. However, acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies. Nevertheless, recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years. In this article, we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades. We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies. Finally, we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap. It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.
引用
收藏
页码:187 / 214
页数:28
相关论文
共 238 条
[1]   Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows [J].
Aasen, Helge ;
Honkavaara, Eija ;
Lucieer, Arko ;
Zarco-Tejada, Pablo J. .
REMOTE SENSING, 2018, 10 (07)
[2]   Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry [J].
Adao, Telmo ;
Hruska, Jonas ;
Padua, Luis ;
Bessa, Jose ;
Peres, Emanuel ;
Morais, Raul ;
Sousa, Joaquim Joao .
REMOTE SENSING, 2017, 9 (11)
[3]   P-TRAP: a Panicle Trait Phenotyping tool [J].
AL-Tam, Faroq ;
Adam, Helene ;
dos Anjos, Antonio ;
Lorieux, Mathias ;
Larmande, Pierre ;
Ghesquiere, Alain ;
Jouannic, Stefan ;
Shahbazkia, Hamid Reza .
BMC PLANT BIOLOGY, 2013, 13
[4]   Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping [J].
Al-Tamimi, Nadia ;
Brien, Chris ;
Oakey, Helena ;
Berger, Bettina ;
Saade, Stephanie ;
Ho, Yung Shwen ;
Schmockel, Sandra M. ;
Tester, Mark ;
Negrao, Sonia .
NATURE COMMUNICATIONS, 2016, 7
[5]   vitisBerry: An Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis [J].
Aquino, Arturo ;
Barrio, Ignacio ;
Diago, Maria-Paz ;
Milian, Borja ;
Tardaguila, Javier .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 148 :19-28
[6]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[7]   Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping [J].
Atieno, Judith ;
Li, Yongle ;
Langridge, Peter ;
Dowling, Kate ;
Brien, Chris ;
Berger, Bettina ;
Varshney, Rajeev K. ;
Sutton, Tim .
SCIENTIFIC REPORTS, 2017, 7
[8]   Uncovering the hidden half of plants using new advances in root phenotyping [J].
Atkinson, Jonathan A. ;
Pound, Michael P. ;
Bennett, Malcolm J. ;
Wells, Darren M. .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 :1-8
[9]   Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat [J].
Atkinson, Jonathan A. ;
Wingen, Luzie U. ;
Griffiths, Marcus ;
Pound, Michael P. ;
Gaju, Oorbessy ;
Foulkes, M. John ;
Le Gouis, Jacques ;
Griffiths, Simon ;
Bennett, Malcolm J. ;
King, Julie ;
Wells, Darren M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (08) :2283-2292
[10]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631